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Dedication 

We are convinced that adherence to the values of nonviolence will usher in a more peaceful, 

civilized world order in which more effective and fair governance, respectful of human dignity 

and the sanctity of life itself, may become a reality. 

 

In implementing the principles of this Charter we call upon all to work together towards a just, 

killing-free world in which everyone has the right not to be killed and responsibility not to kill 

others. 

 

All states, institutions and individuals must support efforts to address the inequalities in the 

distribution of economic resources, and resolve gross inequities which create a fertile ground for 

violence. The imbalance in living conditions inevitably leads to lack of opportunity and, in many 

cases, loss of hope. 

 

Civil society, including human rights defenders, peace and environmental activists must be 

recognized and protected as essential to building a nonviolent world as all governments must 

serve the needs of their people, not the reverse. Conditions should be created to enable and 

encourage civil society participation, especially that of women, in political processes at the 

global, regional, national and local levels. 

 

To address all forms of violence we encourage scientific research in the fields of human 

interaction and dialogue, and we invite participation from the academic, scientific and 

religious communities to aid us in the transition to nonviolent, and nonkilling societies. 
 

(Permanent Secretariat of the World Summit of Nobel Peace Laureates, 2007) 
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Abstract 

This study examines how critical mathematical literacy teachers conceptualize their practices and 

how those practices were demonstrated in the classroom. Practices were considered from an 

ontology of mathematics education, specific to critical mathematical literacy, in which classroom 

interactions question what it means to do mathematics as an individual, as a citizen, as a 

community member. The study adopted an ethnographic study of three participants who self-

identified, or were nominated by colleagues or peers, as critical mathematics secondary school 

teachers. The emphasis focused on understanding the core values and beliefs of these teachers to 

better comprehend how this subculture conceptualizes critical mathematics literacy (CML) 

practices. Analysis took particular note of the nature of strategies used for CML instruction, as 

well as means for developing an understanding of the meaning of participants’ classroom 

actions. Critical mathematical literacy was interpreted as six domains of mathematical 

understanding that prepare students to explore their life situations through an understanding of 

how mathematical comprehension of social and moral decisions can lead to transformative social 

change. 
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A Discussion Concerning the Ontology of the Critical 

Mathematical Literacy Classroom 
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Introduction 

How many students can parse a newspaper advertisement offering home equity loans at 

14.25%? Is that a good rate; is it reasonable to expect students to understand this context? Should 

this even be something we want our students to use mathematics to think about? How about 

using spatial reasoning to figure out a route on a subway map; or, being able to understand a bus 

schedule? Imagine what mathematics teaching would be like if it engaged students to see how 

mathematical thinking can be used in everyday issues. That is to say, what if mathematics 

teaching taught children how there are mathematics outside the classroom and gave them the 

mathematical confidence and tools to think independently, ask intelligent questions of society, 

and be motivated to change things for the better. Imagine the classroom life of such students and 

their teacher. Now believe that this mathematics teacher is you. 

In searching for what it means to be a critical mathematical literacy (CML) teacher, this 

project incorporates several perspectives on the education of mathematics teachers, ways the 

mathematics teacher develops professional knowledge, and the role of a mathematics teacher 

educator. In considering a perspective on instruction, this work draws heavily of the early work 

of Peirce (1903) who commented that mathematical knowledge “must, if it is to be properly 

grounded, aim...to discover not how things actually are, but how they [are] supposed to be” (p. 

121). This distinction, in positioning mathematical knowledge as how things are supposed to be 

encountered in everyday experience, moves away from assumptions of mathematical knowledge 

as propositional (A. Peressini & Peressini, 2007) to mathematics that is less absolutist. 

Mathematics educators must move past a Platonic representation of mathematical 

knowledge as a preexisting ideal, to a more global system in which one can explore things as 

they are situated in common, lived societal and cultural experiences. That is to say, if there is a 
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shift in foundational thinking, how individuals, mathematics teachers, are thinking, what is 

society going to value as mathematics teachers; what kind of knowledge? Should the curriculum 

be more traditional and formalist or can one begin to accept it as having historical value, and thus 

included, but also address everyday experiences that will give children more common-sense 

understanding. Once one begins to interpret mathematical knowledge in contrast to traditional 

Platonism, the teaching of mathematics must not only be capable of interacting with changing 

society and cultural experiences, but also must be seen as incapable of entirely interpreting what 

is to be taught as certain; that is, pedagogy must now move away from seeing mathematical 

knowledge as skills and mastery in equations of numbers of pizza slices or speeds of trains 

traveling toward each other from opposite directions, to an ideology in which mathematical 

knowledge and pedagogy become susceptible to critical discourse, public analysis, and debate. 

Reflecting on the historical role and production of mathematics knowledge in relation to 

education, educators see a primary interest in meeting the needs of a technocratic society. For 

example, as documents such as A Nation at Risk (Denning, 1983) emphasized preparing students 

with mathematical skills for scientific and technical careers and, in turn, preparing mathematics 

teachers as predominately addressing classical ideas and concepts. Society must enable teachers 

to prepare their students to participate in modern society, rather than overlooking relations 

between mathematics and the liberal arts, social and political issues, and urban existence. 

Increased competition for public funding in teacher preparation privileges monoculture practices 

(Lincoln & Cannella, 2004) and narrow scholarship (Cannella & Lincoln, 2009) focused on the 

production of quantitative results, citing often conflicting results of “What Works” (Schoenfeld, 

2006; Viadero, 2004), and evidence-based research as more credible than critical pedagogical 

inquiry. 



www.manaraa.com

4 

Also lacking in the preparation of mathematics teachers are ways teachers may develop 

their students’ mathematical confidence. By this, I am referring to guiding teachers to understand 

why their students’ need to feel comfortable to use classical and everyday mathematical 

knowledge in ways that are culturally and personally fulfilling. That is, one may see the role of 

preparing mathematics teachers as an opportunity to prepare thoughtful mathematics educators 

with lessons for mathematical activity meaningful to their students’ lives and for active 

participation in society. 

To address these issues, mathematics teacher education should emphasize the 

mathematics teacher’s generation of pedagogical knowledge rather than simply seeking 

justifications for teaching in one particular style. That is to say, in emphasizing pedagogical 

knowledge over justification, encourages practices and means for critique and critical discourse 

and teaching from and through a diversity of styles while also recognizing that the same is true 

of students. We want to move past the expectation of algorithms and procedures that limit 

students to short answers (Schoenfeld, 1988) to teaching in which expansion of the answers, 

through peer or class discussion is valued. Fostering such a perspective views the mathematics 

teacher, and students, as constantly cycling in a system of knowledge generation in which 

beliefs, facts, experiences, and concepts pass through realms of the individual (“I conjecture that 

the sum of three angles within a triangle is 180 degrees”) to public (“As a group, we have 

measured and added all angles in four different triangles to agree that perhaps it is the case that 

triangles’ angles sum to 180 degrees”). The point is not that comparison and discussion of a 

limited number of examples establishes knowledge but that social negotiation of meaning 

contributes to individual’s mathematical knowledge and allows for the generation of new 

considerations (“I wonder if there is a triangle whose angles do not sum to 180 degrees”). This 
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perspective draws on social constructivist ideas that consider how the individual’s and the 

public’s understanding of “mathematics each contributes to the creation and re-creation of the 

other” (Ernest, 1991, p. 43) and aims to facilitate critical thought, the questioning of 

autocratically transmitted mathematical knowledge, and the acknowledgment of only that which 

has been sensibly explained through public classroom discourse. Such teacher preparation values 

the teacher as a “transformative intellectual” (Giroux & McLaren, 1986, p. 301) who prepares 

students to become positive agents of change. This transformative teacher questions the means 

through which knowledge is produced, making outcomes of education meaningful, critical, and 

ultimately emancipatory (Aronowitz & Giroux, 1985; Skovsmose, 1994) against a continuation 

of present gender (Boaler, 2002), race (Martin, 2000; Moses & Cobb, 2001), and socioeconomic 

and cultural (Hinchey, 2010; Skovsmose & Valero, 2001; Valero, 2004) inequities that more 

traditional classrooms maintain. 

Teachers must challenge students to communicate their ideas in a professional and 

friendly classroom manner, yet incorporate their previous knowledge and experience, which are 

made public through classroom dialogue—”a process of learning and knowing … with the 

objective of dismantling oppressive structures and mechanisms prevalent both in education and 

society” (Freire & Macedo, 1995). Through this process, educators will consider what culturally 

relevant mathematics practices look like and determine ways to build on the common practices 

students already bring to the classroom. Engaging teachers with discussion about the means and 

ways to include sociopolitical issues in their mathematics instruction is a part of mathematics-

education research where there is little information. That is to say while prior studies have 

considered the application of socio-mathematical issues among middle school students (Gutstein, 

2003) , underrepresented populations (Clinchy, 1996; Nasir, Hand, & Taylor, 2008; Stinson, 
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2006), vocational and returning adult students (Frankenstein, 1990), research which folds in 

teachers’ awareness of sociopolitical and economic realities to respect and acknowledge the 

plurality of student cultures and histories, from a critical (Freire, 1970; Kincheloe, 2008; Tate, 

1995) and humanizing (Bartolome, 1994) mathematical sense, has not previously been fully 

explored. Such an exploration will consider how incorporating critical and humanizing pedagogy 

in ways emphasizing the social, political, economic, and cultural roles of mathematics in  

challenging existing professional and mathematical understanding. 

Finally, this study is steeped in the social use of mathematics and its related pedagogy. 

As a mathematics educator, that this mode of instruction engages both teacher and student to 

understand the ways in which mathematics interacts with the modern world, using realistic social 

problems in which mathematics can be situated. For example, in the context of a lesson on 

proportion and probability, one might consider using authentic police data to investigate 

important social questions such as, “Given the data, what are the probabilities, if you are a 

person who is African-American, Hispanic, or Caucasian, that your stopped car will be searched 

by police?” and “Based on these findings, what statements might we make about possible 

discrimination based on an individual’s ethnicity?” This work of the critical mathematics teacher 

“begins with the recognition of the suffering of the oppressed in our local communities and 

around the planet” (Kincheloe, 2008, p. 140) and begins to open the education of students to the 

narratives, actions, and opportunities for positive social action by replacing absolutist views of 

mathematics with one that mathematics is, at its core, fallible. That is to say, in composing and 

understanding mathematical statements in a fallibilist perspective there is more to the notion of 

what becomes true and truth than simply what was historically thought of as solid certainty. 

Under an absolutist view, what is true and becomes truth stems from the axiomatization of 
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knowledge into static theorems that further generate and validate the provability of statements; 

however, as it turns out there are mathematical statements whose provability cannot be 

established. For example Gödel’s (1992) incompleteness theorem argues, from a set of axioms, 

there exist true sentences that are not provable (Musgrave, 1993) leading to a property of the 

absolute tradition as to never fully establish all mathematical truths. A view incompatible with 

one that mathematical knowledge is subject to individual and public revision and fully capable of 

enacting positive cultural and social change.  

Conceptual Framework 

In positioning a discussion of CML, it is important to consider existing perspectives on 

mathematical literacy needed to frame mathematical literacy in critical pedagogy. Traditionally 

mathematics teachers are expected to focus on procedural skills and mathematical competencies 

for technical understanding. Teachers give a lesson, give students time to work in class, and 

assign homework. Society valued such mathematics instruction as useful in scientific labor in 

society (Carss, 1986) and as increasing the de-skilling of professions: 

“shop assistants no longer need to calculate change, bank clerks need know nothing about 

banking, waiters and waitresses no longer work out bills, engineering is reduced to 

following blueprints: even computer programming, heralded only a short time ago as 

creating a need for a newly creative, mathematically-trained workforce, has become, in 

the hands of the large companies who employ programmers, largely a routinised and 

alienating activity. As technology invades all aspects of daily life, people actually need 

less- not more – mathematics.” (Noss, 1994, p. 7) 

 

With concern for improved means of mathematics education and initial conceptions of 

mathematical literacy, change is primarily concerned with introducing students to contemporary 

applications in a technological society (Howson, Keitel, & Kilpatrick, 1981). 
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This project draws on three ideas: equity, equality, and dominant mathematics. With 

respect to equity, consider the Equity Principle (National Council of Teachers of Mathematics, 

2000), which puts forth that all students must have opportunities, support, and access to a 

challenging curriculum and teacher. In a typical mathematics classroom, this means diversity in 

resources is provided to ensure that “mathematics can and must be learned by all students” 

(National Council of Teachers of Mathematics, 2000, p. 13). If teachers wish to begin revising 

the pedagogy of traditional mathematics in addition to furthering equity in mathematics 

education, they need to consider ways to address barriers that constrain teaching from reforming 

the dominance of the individual and embrace an ethical perspective on diversity (Greer, 

Mukhopadhyay, Powell, & Nelson-Barber, 2009), in which respect for difference and 

cooperation are cherished. 

Although equity deals with diversity, respect, and cooperation among students, equality 

in education has taken many shapes. Teachers often are exposed to and made aware of 

inequalities that focus on a lack of balance. Consider the current U.S. minimum wage, per hour, 

$7.25 (U.S. Department of Labor, 2007), compared to the hourly pay of Chesapeake Energy’s 

CEO Aubrey McClendon (Wall Street Journal, 2009), $338; or consider discussion of unequal 

comparisons which seem to carry less bias: equal opportunity across gender and ethnicity, or 

how students enter classrooms with unequal life experiences, yet are supposed to leave with the 

same learning, the same outcomes. Working toward equality draws vivid depictions of 

hierarchical uncooperative social structures, which are homogenous and unequal. 

In A Nation at Risk (Denning, 1983), there was a call, a push, a race against other 

industrialized countries to change education policy because “our once unchallenged preeminence 

in … science and technological innovation is being overtaken by competitors throughout the 
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world” (p. 469). These “competitors” had overtaken our cultural narcissistic view of global 

“preeminence” in science, technology, engineering, and mathematics. The solution offered was a 

new and accelerated push for improved support for the teaching of mathematics and science, 

emphasizing mathematics that would enable the United States to maintain dominance at the top 

of the global ladder: pedagogy of dominant mathematics with a focus on mathematical 

productivity, procedural fluency, and utility; the kind of mathematics that cuts children off from 

the society, communities, and democracy they live in. A Nation at Risk dominated mathematics 

for the following 7 years and positioned the high school curriculum to be based on corporate and 

industrial interests. The United States needed more high school graduates with “necessary” 

mathematical understanding to fill society’s technocratic employment needs. The 1990s saw 

educator interest in becoming more student-centered and challenging the dominant mathematics 

view of efficiency and fluency, with emphasis on locating mathematics in realistic, 

contextualized problems (Gravemeijer, 1998; Treffers, 1991; Van den Heuvel-Panhuizen, 2001). 

As concerns about more student-centered instruction emerged during the postindustrial 

era, educators shifted from needs of a technological society to the role mathematics plays in the 

world. This shift, recognized in the documents of mathematics professional organizations 

(Mathematics Council of the Alberta Teachers’ Association, 2005; National Center for Education 

Statistics, 1993; National Council of Teachers of Mathematics, 2000), included procedural skills 

and competencies, previously valued, and began encompassing mathematical processes (e.g., 

NCTM), enabling students to understand the role of mathematics in society as it relates to 

students’ personal and communal activities. This more process- and being-centered focus is 

termed the “social turn” in mathematics education (Lerman, 2000). 
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This social turn in mathematics education gave rise to rethinking the purpose of the 

mathematics educator from one of passively transmitting knowledge to students, to being able to 

contribute to positive social change by addressing social issues and political challenges in 

society, developing ways to overcome the effects of racism, sexism, and classism (Frankenstein 

& Powell, 1988). Researching mathematical pedagogy that employs contextualized problems is 

more student-centered than traditional pedagogy, and reflects the social and cultural awareness 

of student, teacher, and curricula. The public educator (Ernest, 1991) is the foundation for the 

conceptual framework for this study. The public-educator ideology is a social constructivist 

perspective providing a foundation for progressive mathematics didactics and instruction as it 

recognizes that “linguistic knowledge, conventions, and rules” (Ernest, 2010, p. 36) are the basis 

for mathematical knowledge. Second, interpersonal discourse is required as students negotiate 

and reframe knowledge from subjective/personal to objective/public. Third, such a process is 

understood to be a human activity in which mathematical knowledge is negotiated through 

debate, acceptance, and revision. 

Figure 1 outlines this process. The initial stage is located where public ownership meets 

the private realm. At this stage, students participate and engage in shared classroom or peer 

discussion about achieving a commonly shared problem or task. It is here that students’ 

perceptions merge with what is initially negotiated with others. As each student further 

negotiates personal meaning, the location of that meaning shifts from the private to the public 

realm. This occurs as personal meaning gets conventionalized in that the individual’s meaning is 

debated among others, compared, and revised to better align with the meaning of others. 
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   Social location  

  Private realm  Social realm 

 Public 

Individual’s public 

use of sign to express 

personal meaning 

Conventionalization 

 

Conventionalized and 

socially negotiated sign use 

(via critical response & 

acceptance) 

Ownership  Publication   Appropriation  

 Private 

Individual’s 

development of 

personal meanings 

for sign and its use 

Transformation 

 

 

 

Individual’s own 

unreflective response to 

imitative use of new sign 

utterance 

Figure 1. Model of the construction of mathematical knowledge (adapted from Ernest, 2010)  

Still within the social realm, as meaning moves from public to private ownership, the 

process of appropriation deals with how the student internalizes meaning just negotiated, whose 

ownership was public. Additionally, the production of knowledge transforms from the social to 

private realm. In the private realm, ownership of knowledge becomes private as the internalized 

prior meaning transitions and leads to new personal meaning. Through the process of 

publication, the newly generated meaning whose ownership is private now becomes public as it 

enters the community (classroom) and is finalized. At this last and new first stage, students form 

new meanings based on the publicized knowledge made available through publication. 

Research Questions 

The focus of this study is on understanding the core values and beliefs of CML educators 

who constitute a culture-sharing group. By this I mean that these educators largely follow a 
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perspective that recognizes “mathematics knowledge is culture-bound, value-laden, 

interconnected and based on human activity and inquiry. … It is a critical epistemological 

perspective, which sees ethics, social, political and economic issues [as] strongly inter-related … 

[where] knowledge is seen to be the key to action and power, and not separated from reality” 

(Ernest, 1991, p. 197). Developing an understanding of the group’s themes will better suggest 

how this subculture works and provide analysis of classroom practices and beliefs. 

My involvement was to observe 3 CML teachers during their professional working day 

over a period of 5 to 6 weeks. CML educators are participants in a subculture of critical teaching 

that engages in multilayered resistance to traditional pedagogy. For example, teachers educate 

for the purpose of social transformation and oppose dominant school mathematics (Gutiérrez, 

2002), and may practice other forms of resistance at various levels. To investigate these 

practices, my study addressed two questions. The first question relates to the relationship 

between participants’ conceptualization of CML and their classroom practice. The second 

question addresses where the participants’ beliefs are situated. The questions follow: 

1. How do CML high school teachers conceptualize their CML practices and how are 

those practices enacted in the classroom? 

2. What is the nature of CML high school teachers’ instruction aligned with a CML 

philosophy? 

Methods 

The overall study approach followed an ethnographic perspective (Gobo, 2008; Madison, 

2005; Spradley, 1980) in collecting data, observing, and understanding the meaning of 

participants’ interactions and behavior. This process occurred in stages that reflected changes in 

observation and coding. The first stage of observation was descriptive in nature, concerned with 
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capturing the mathematics classroom and describing the teacher, the students, and the activities 

in which they engaged, after initial descriptive observations centered on locating the cultural 

patterns occurring in the mathematics classroom. For example, I observed the ways a teacher 

presents a problem, the mathematical activities, and the physical objects that were present. 

Questions and topics generated during the initial observations led to further observations that 

focused on investigating structures and relationships, such as the ways teachers used authentic 

data as part of a CML problem in their classroom instruction, or the students’ specific responses 

to social or political mathematics problems. Observations at this stage are called focused 

observations. 

This methodology implies changes in the relationship between time spent observing and 

the stages of observation. During initial observations, the majority of time was spent conducting 

descriptive observations. Starting with the 5th observation, attention shifted to focused 

observations. By the 10th observation, time spent conducting descriptive and focused 

observations was gradually reduced to allow time for selective observations. The relationships 

among observation time and observation type are detailed below in Figure 2. 
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Figure 2.Relationship of observation time and observations 

 

Sources of Data 

Data were collected from five sources: field notes and a fieldwork journal, interviews 

with participants, classroom observations, examples of teacher work, and participant 

autobiography. 

Field notes and journal. Field notes and a fieldwork journal were condensed, detailed, 

or analytic in nature. I used these as an opportunity to record ideas, experiences, breakthroughs, 

memoranda, and challenges as they occurred. For example, Appendix A exhibits the initial 

observation protocol and an example of a typical session. 

Interviews. Two formal interviews were conducted with each participant. Follow-up and 

informal post-lesson interviews were also done in order to clarify and better understand any 
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concerns during class time. All interviews were recorded and transcribed for analysis. The initial 

interview, outlined in Appendix B, was designed to probe the participant’s educational ideology 

for mathematics through addressing such elements as how they describe their personal views of 

mathematical epistemology and views on goals of mathematics education in relation to modern 

culture and society. For example, when asked to describe a focus of instruction (Interview 1, 

Question 1a), Gwen mentions an emotive focus on mathematical knowledge: 

Gwen:  I want [students] to have knowledge of mathematics. But I want them to have 

good feelings about mathematics. I want them to feel like it's not awful; it's not scary; it's 

not abstract. It's something that they can do, it can be learned in incremental pieces, and 

it's useful… I want a student to think to themselves, "When I'm doing math, I feel safe," 

or "I don't feel out of control or scared or incompetent." I want them to know that 

everybody who learns math well learns it from somebody. 

 

The second interview, outlined in Appendix C, queried participants on their beliefs and notions 

regarding teaching and learning mathematics from a critical mathematical literacy perspective. 

For example, when asked about the nature of teaching mathematics, Owen responded: 

Owen: I find mathematics is something that we can utilize every day, and that's 

something that I preach quite a bit to the kids. That math becomes a piece that we can -- 

everything that we do involves math. So I tell the kids that when you're driving, just the 

idea that being able to stop your car in time and not go through the stop light -- that's 

math. I find that to me, in my mind, it started the idea of what are we teaching our kids? 

Does anybody realize how much math we really need just for even a job as mechanic? 

Usually, we think mechanic -- turn the wrenches and the job's done. Not so much 

anymore. I think that … as you look throughout time that for some reason, it's this innate 

idea of the math has always been there. In fact, people have always tried to get their mind 

around it. And that we advance it every day and that this thing that we call math. 

 

Classroom observation. Classroom observations were conducted during each 

participant’s regular school day for the entire six weeks. These observations progressed in stages 

from descriptive to focused to selective. The initial points of concern for descriptive observations 

are outlined in Appendix A. Focused observations centered on a theme or detail important from 
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the descriptive observations. For example, below is a sample of my notes from a focused 

observation with Jack from November 22
nd

 concerning how student interactions influence his 

instruction- 

One of the challenges with group work is to keep students on task. Clickers are a tool  

very suitable for engaging students and monitoring their progress. When they have  

answered a question, it often opens up further opportunities for class discussion, which 

can lead to smaller group discussions later. 

 

Selective observations are the most narrow and, in particular, focus on a semantic relationship 

(see Table 1).  These observations generally occurred during the last week of observation. With a 

primary focus on a semantic relationship, selective observations were used to further establish 

the given relationship across dimensions of contrast (see Table 1 below) or extend that 

relationship inwardly (see Highlighted Text from 12/6/2010 below).  

Table 1 

Selective Observations Dimensions of Contrast and Highlighted Text 

 
Where is the 

focus? 
Role of student? 

Peer-principled ethics pedagogical 

tools 
Self, peer “Be responsible”; social amiability 

Image-building ethics pedagogical 

tools 
Self, peer Receive/maintain T-S camaraderie 

Métier-based ethics pedagogical 

tools 
Work culture Receive/learn culture 

 

Highlighted Text from 12/6/2010 Selective Observations with Jack.  

This afternoon I am focusing on the qualities teachers need for building students' positive 

mathematical self-identity. Presently this involves “proper questioning” which looks like 

a series of probes and suggestions that Jack uses to get kids thinking about things more 

critically. Possible stages are (1) asking open ended questions, (2) creating space/wait 

time for students to consider answers to the questions, (3) considering with the class open 

ended (extension-type) questions, (4) opportunity for sharing. 

   

An additional consideration for positive mathematical self-identity involves 

“socialization in the classroom” as experiences where the teacher is maintaining or 
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relaxing control of classroom structures such as organization, scheduling time for 

activities, etc. During this particular class (Grade 10 applied math) Jack makes such 

socialization individual by differentiating instruction to introduce and re-expose students 

to situations and skills needed in his community of learners. 

 

 

Examples of participants’ work. The examples of teacher work included lesson plans, 

professional or curricular materials, problems and examples, and materials used during teachers’ 

daily professional life. An example of materials used during participant’s daily professional life 

is exhibited in Appendix A-1. This exhibit is a rubric used by a participant to assess students’ 

final presentation of a political or social issue across math, creativity and presentation, and 

information at the end of the semester of a grade 10 applied math class. 

Participant biography. Participants completed autobiographies including how prior 

beliefs and experiences shaped their current work. Topics suggested included their current 

perspective on their teaching practices, how they arrived at such a point, how this relates to their 

own academic experiences, how they have or have not developed professional confidence, and 

how personal beliefs shape their participation in teaching culture. 

Participants 

Participants in this study included 3 full-time, veteran, secondary mathematics teachers. 

Selection for potential participants began with brief emails and/or phone calls to secondary 

educators that had expressed interest in engaging their students with social justice pedagogy. For 

example, I contacted mathematics educators on relevant email listservs or through conversation 

with concerned teacher educators. Initial efforts produced eight mathematics educators at five 

different districts/schools. After further conversation with the initial group, three participants 

were selected for full participation in this study. Final participants were not from the same school 
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or district and have been secondary math teachers for 8 to 11 years. All participants were 

state/province certified professional educators in secondary mathematics. All participants had 

completed graduate level mathematics courses and attained graduate degrees in mathematics or 

teaching mathematics at the secondary level. One participant also had a graduate degree in 

chemistry. The participants self-identified with a CML-focused ideology in that their interest in 

CML extended beyond simply teaching a particular unit or lesson(s) from a CML perspective. 

Participants’ schools were public schools in large metropolitan areas in districts supporting at 

least 10,000 students. School administration and math chairs of each school were supportive of 

participants—acknowledging the participant as a CML teacher—and encouraging the teacher to 

continue his/her instruction.   

Jack Harkness
1
, at Maria Montessori High School, taught secondary mathematics for nine 

years. His classes used a locally-developed curriculum focusing on processes of mathematics 

(such as those outlined for grades 9-12 in National Council of Teachers of Mathematics, 2000) 

further supported by technology and complementary lab exercises. Math courses he taught 

ranged from algebra to analysis (with trigonometry). Maria Montessori High School was the 

most diverse in terms of location and demographics. The school’s neighborhood was mostly 

lower- to middle-class with an immediate population of 510,000. The school district managed 14 

high schools with 44 elementary and middle schools. English was spoken by 44% of the 

population, with Punjabi being the next most common language (27%) and Gurjarati (8%) and 

Urdu (8%) representing the top four most common languages.   

                                                 

1
 Throughout this study, all participant and school names reflect pseudonyms.   
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Gwen Cooper, from Heinz von Foester High School, taught secondary mathematics for 

11 years. Her classes used College Preparatory Mathematics (CPM) for algebra 2 and pre-

calculus and Hughes-Hallett et al (2005) for calculus. A fifth class, Senior Inquiry, used a 

locally-developed curriculum specifically addressing sociopolitical issues for grade 12 students. 

Heinz von Foester School was officially closed in 2011 and all students and teachers were 

redistributed into local schools. The school’s neighborhood was predominantly lower class with 

average family income (2004) of $30,000 and roughly 20% of families with income below the 

2009 poverty line. The largest ethnicity group in the school’s neighborhood was Caucasian 

(63%) followed by Hispanic/Latino (14%) and Asian (13%). Challenges to the school district 

and administration were planned during Fall 2010 (see Appendix G) and acted on in the Spring 

of 2011. Ultimately the district cited test score equity as reasons for closing the school.   

Owen Harper, from Giambattista Vico Secondary School, wrote and taught with a 

locally-developed and locally-published curriculum—commissioned by the district school board 

and provincial Ministry of Education—specifically focusing on maturing students’ learning skills 

and work habits (Ontario Ministry of Education, 2010) along with mathematics for citizenship. 

His classes were not split by content (e.g., one class as algebra, another as pre-calculus, etc.) but 

by grade (e.g., grade nine mathematics, grade nine applied mathematics, grade ten mathematics, 

etc.). Courses of all other mathematics teachers at the school and district were also designed this 

way.   

Data Generation and Coding Methods 

The study followed an ethnographic perspective (Gobo, 2008; Madison, 2005; Spradley, 

1980), in which the scope of observation and coding changes and the end result was an 

understanding of the meaning of participants’ cultural knowledge and beliefs used to interpret 
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their experience and generate meaningful practices. The stages of observation were (a) 

descriptive observations, (b) focused observations, and (c) selective observations. The stages of 

data coding were (a) domain coding, (b) taxonomic coding, and (c) componential coding. This 

process is outlined in the figure below: 

 

Figure 3. Semantic observation and coding relationship 

Descriptive observations. During the first stage of observation, I was concerned with 

gathering descriptive observations of the physical space, the people involved, related acts people 

performed, objects that were present, activities people carried out, sequencing of events, goals 

people tried to accomplish, and emotions felt and expressed. These early stages of observation 

formed the basis of domains to be subsequently coded and analyzed. For example, during 
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descriptive observations, I expected to observe the roles of the teacher in posing social or 

political mathematical problems and I expected to identify the kinds of mathematical knowledge 

teachers hoped to build with students in encouraging mathematical confidence to confront 

authorities. 

Focused observations. Following descriptive observations, focused observations were 

conducted to study a smaller part of the cultural patterns and produce taxonomies that 

approximated and detailed participants’ cultural knowledge by representing relationships among 

the parts of a culture. Here, observations were concerned with the ways components were 

structured and related. For example, prior domain coding had identified the means-end 

relationship of “motivating social change” as a domain Owen and Gwen frequently engaged in. 

The focused observation further expanded that domain to ask “What are all the ways to motivate 

social change in the math classroom?”  Observation notes follow- 

Across several participants (Owen & Gwen) there are different ways of motivating social 

change. So far I have observed two ways students have responded positively-- 

 Soapboxing—In one instance, Owen questioned students about what it means to 

get an apology and how to know what is fair and what is not, and what about 

what are some employer assumptions about the students which could lead to 

racist situations. Through this deconstruction of a recent situation, he continues 

to highlight how the people with power will not be able to fix the situation if it is 

not brought to their attention. 

 Exhibiting— Gwen positions exhibiting in class conversation examining how data 

from the 2010 census might be different then 2000. The class considers how the 

white population is “so white” and how the Native American percentage of 

population is the smallest. Gwen asks students more about their city. She tries to 

get kids to think about how the numbers might be different. Reasons involve 

characteristics of cities in the West coast (students suggest less African American; 

lots of Asian in the neighboring city; age demographics might be different). 

Students are working with tables which include populations in homeless shelters 

and homicide rates. The task is to suggest two statements about what [students] 

observe. She starts conversation by noticing a difference in the homicide rates of 

2004 (36% white male, 39% black men). The idea of what would be reasonable 

and equitable rates comes into conversation. 
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Selective observations. In the last stage of observation, the scope progressed from broad 

to in-depth observations. At this final stage, observations were conducted to locate meaning in 

differences and similarities between teachers’ specific practices. Selective observations drew on 

descriptive and focused observations and enabled the researcher to follow intuitive inquiry and 

test ideas in an attempt to understand the significance of related practices. For example, staying 

with the means-end relationship of “motivating social change”, selective observations further 

expanded the ways to motivate social change through soapboxing as (part of) a classroom poster 

outlined below: 

 

Figure 4.Exhibit of data demonstrating selective observation of “motivate social change” 

Data coding procedures. The coding of data was conducted in three stages, following 

each of the descriptive, focused, and selective observations. At the first stage, data collected 

during descriptive observations were analyzed using domain coding to discover cultural patterns. 

Then data collected during focused observations were analyzed with taxonomic coding. Finally, 

information gathered from selective observations were analyzed using componential coding.   

Data coding quality. To address concerns about trustworthiness and credibility of data, 

this study employed three separate processes in approaching the issue from an interpretivist 
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criteriology (Hammersley, 2007; Seale, 1999, 2002) as a means to emphasize data quality. Two 

processes were the ongoing interactions between the researcher, each participant, and their 

generated data. The first, critical voice, as a means to disrupt dominant sociomathematical 

political views and prior knowledge; the second, heteroglossia, as a further means of 

transactional validity (Cho & Trent, 2006) emphasizing participant and researcher convergence 

upon analysis and interpretation of collected data; third, traditional means appropriate for 

qualitative judgment cases were employed to exhibit agreement between two coders; this  

included computing Cohen’s kappa (1960) and the Perreault and Leigh (1989) measure as means 

of assessing the overall quality of data.   

Critical voice. In an effort to acknowledge the work of others that often goes 

unrecognized, Madison (2005) suggested that the critical ethnographer employ positionality to 

disrupt neutral–status-quo politics and dominant knowledge. This, in turn makes accessible “the 

voices and experiences of subjects whose stories are otherwise restrained” (p. 5). In my study, 

the role of the participant observer has two purposes: “(1) to engage in activities appropriate to 

the situation and (2) to observe the activities, people, and physical aspects of the situation” 

(Spradley, 1980, p. 54). The role of the participant observer is to reflect on one’s own actions, 

the behavior and norms of others, and what is happening in the social situation. 

Based on these purposes, data gathering occurred as I reflected on actions and engaged in 

insider/outsider experiences. As an insider, I have experienced the challenges, successes, and 

frustration that teaching—particularly from a CML perspective—can provide. As an outsider, I 

viewed the classroom, students, teachers, and myself as subjects. The data collection occurred 

during both experiences. As such, the role of the researcher as participant observer involved 
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moderate participation (Spradley, 1980) in which a balance was struck between insider and 

outsider, and between participation and observation. 

Heteroglossia. Teaching from a CML perspective can be a sensitive issue for the teacher 

and the school. I believe my experience as both a classroom teacher and teacher supervisor has 

given me insight into this world. In keeping with the social and transformative nature of CML, 

analyses and interpretation are heteroglossic in nature (Dentith, 1995). As a means of working 

with participants, heteroglossia refers to the centripetal nature of discourse, in this case teacher 

discourse, “towards the unitary center” (Dentith, 1995, p. 35). This process may be thought of as 

similar to established methods of participant validation or member check. Heteroglossia is 

particularly useful in the case of CML, as participants help to improve on the accuracy and 

transferability of the study’s findings. One of the goals of the project was to explicitly 

acknowledge the voice of this subculture of teachers. Heteroglossia will help to acknowledge and 

elaborate on the practices and strategies teachers use when engaging in the six domains of CML. 

It also allowed the teachers to contest and suggest ways for revising the understanding of the 

CML domains. This is of great significance, because heteroglossia enables teachers to work 

through their own personal beliefs and history to further establish these domains and arrive at a 

unified understanding. This centripetal process of arriving at a unified understanding is further 

validated by CML teachers’ discussion of how their practices and discourse generate agreement 

and meaning making (Quine, 1960). 

 Overall quality. As a means in considering the overall quality of data, and to determine 

the amount of agreement in the study’s qualitative judgments, Cohen’s kappa (1960) was 

employed to observe the proportion of agreement between two coders. Using 20 randomly 

selected cases, the overall percent of agreement was found to be 90% and the coding across the 
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cases resulted in κ = 0.88167. Further, using the overall percent of agreement as 0.9, ordered 

cases into 13 categories of coding, and across 20 random cases, the resulting Perreault and Leigh 

constant was found to be 0.94428. Generally, values between 0.8 and 1 suggest strong inter-rater 

reliability for both values and, in this two coder case of the Perreault and Leigh measure, a 

“better behaved” (Rust & Cooil, 1994, p. 3) value of .944 also suggesting strong agreement 

between coders.  

Domain coding. During the first stage of analysis, I sifted through data to begin coding 

the cultural patterns (called domains) participants exhibited. The object of domain coding was to 

locate and identify the semantic relationships in the cultural domain. In general, nine semantic 

relationships existed in domains. These are presented in Table 2.  

Table 2 

Semantic Relationships 

Form Semantic relationship Example 

1. Strict 

inclusion 

X is a kind of Y Addition is a kind of mathematical operation. 

2. Spatial X is a part of Y, X is a place 

in Y 

The overhead is a part of the classroom. 

3. Cause–

effect 

X is a result of Y, X is a 

cause of Y 

Student–teacher dialogue is a result of 

classroom discourse. 

4. Rationale X is a reason for doing Y Gaining understanding is a reason for doing 

problems. 

5. Location X is a place for doing Y The teacher’s desk is a place for grading. 

6. Function X is used for Y A calculator is used for graphing equations. 

7. Means–end X is a way to do Y Letter writing is a way to do public critique. 

8. Sequence X is a step (stage) in Y Checking work is a step in completing a 

problem. 

9. Attribution X is an attribute 

(characteristic) of Y 

Posing social problems is an attribute of 

CML instruction. 

Note: Adapted from Saldaña (2009), Spradley (1980), and McCurdy, Spradley, and Shandy (2005). 
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Taxonomic coding. Following domain coding, the second stage of coding—taxonomic 

coding—helped the researcher understand more deeply how contrasts in knowledge and behavior 

were systematized and organized. This was accomplished by expanding and revising a selected 

domain, then introducing subsets and additional terms based on similarities. For example, after 

domain coding classroom observation notes from Owen’s classes during the first week of June, 

2010, the strict inclusion semantic relationship “kinds of status tokens” was identified. 

Subsequent taxonomic coding then expanded this relationship in specifically coding data to 

determine the answer to the question “What are the different kinds of status tokens?” An 

example analysis is exhibited below in an interview with Jack Harkness- 

Michael:  Tell me about what you hear from  

different people at different schools 

who have tried to do similar things that 

you're doing, and what they've found  

successful or found challenging? 

 

Jack:  It's definitely come across as a  

challenge. But it helps to have a 

starting place.  So that a teacher that 

wants to implement a program like 

this, they go through a process of 

learning about how to teach social 

issues and social understanding of 

using math.  

 

 

 

 

 

 

 

 

(What kind of status token is this?) 

Pedagogical trophy 

Figure 5. Exhibiting a taxonomic coding session 

Componential coding. The final stage of coding was used to organize and represent the 

meaning people have assigned to their knowledge and beliefs. This was accomplished by 

organizing and representing contrasts found in prior stages of observation and coding. During 

this final stage of coding, I was concerned with the meaning participants assigned to cultural 

categories. The example of a componential coding session, highlighted in Table 2, compares 
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likenesses and contrasts found in prior stages of observation and coding (student- and teacher-

centered) with two strict-inclusion semantic relationships (“kinds of spaces” and “kinds of status 

tokens”).   

Table 3 

Sample Review of Componential Coding Session 

 Student-centered Teacher-centered   

 

Involves 

student-

centered 

social 

aspect? 

Involves 

student-

centered 

cultural 

aspect? 

Involves 

teacher-

centered 

social 

aspect? 

Involves 

teacher-

centered 

cultural 

aspect? 

Involves 

pedagogical 

trophy? 

Involves 

professional 

barriers? 

 

Kinds 

of 

spaces 

Yes Potential Yes Yes No Yes 

Kinds 

of  

status 

tokens 

Yes Yes Yes No Yes Potential 

 

Domain coding identified “kinds of spaces” and “kinds of status tokens” as important 

relationships for participants. Through more observation specific to these relationships, and 

through taxonomic coding, student-centered and teacher-centered were identified as various 

kinds of “spaces” and “status tokens.” Componential coding contrasts how such attributes are 

characteristic of each relationship.  

Results 

This section will present the results of analysis in two parts. The first part will present 

results specific to the first research question. That is, how participants conceptualized their 

practices and ways those were enacted in the classroom. These results are framed by ontology of 

the culture of CML teachers in which four kinds of spaces were exhibited by the data: ways to 
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transmit culture, the Bardo, the CML narrative, and teacher structures. These results are outlined 

in the table below and are a reply to the first research question. The second part of the results 

section will examine the nature of participants’ values and beliefs aligned with CML instruction. 

These results are a reply to research question two and are represented by four different aspects of 

each participant’s mathematics education ideology. The four aspects examined are epistemology, 

the participant’s interpretation of the role of mathematical knowledge, the participant’s 

perception of the social-mathematical role of the student, and their value interpretation of the 

culture of CML teaching. 

Table 4 

Outline of the First Part of the Results Section 

 

How do CML high school teachers conceptualize their CML practices 

and how are those practices enacted in the classroom? 

 

Ontological 

space 
Focus Characteristics 

Ways to 

transmit 

culture 

Bottle-necking life 

opportunities 

Actions school community members participate 

in that do not fully engage or challenge actors 

Maintaining the status 

quo 

Messages and practices that guard dominant 

culture 

Image-building ethical 

pedagogical tools 

Working with students so they become positive 

self-managers and begin to recognize their 

positive and negative behaviors 

Bardo 

The cultural Bardo 

Ways in which teachers help students to realize 

understanding mathematics involves positive 

beliefs and emotions; experiencing mathematics 

through communities and personal experiences 

The social Bardo 

Societal spaces, often stigmatized by dominant 

culture, yet important for students, teachers, and 

community members (e.g., prison, community 

poverty, the war in Iraq, the Navajo Nation) 

The CML 

Narrative 
Contexts 

Everyday environments beginning the CML 

narrative, enabling data, discussion, and problems 

to be situated (e.g., data on tuberculosis deaths 

from 1990 to 2010, a school board meeting) 
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Actions 

Process of connecting to a Narrative’s context in 

order to engage in thinking and learning about 

mathematical arguments (e.g., understanding a 

function’s output in terms of income disparity) 

Results of actions 

Close the CML Narrative based on observations  

and experiences (e.g., optimal placement of 

sleeping mats in a homeless shelter) or that has 

significant self-meaning (e.g., organizing students 

for a protest march) 

Teacher 

structures 
Didactical 

Objects that represent the professional 

obligations, challenges, and roles participants 

faced 

 Coping 

Means and ways participants employed in dealing 

with stressors of teaching (e.g., classroom coffee 

station)  

 

In this first part of the results section I will discuss findings from my study that suggest 

the need for mathematics educators to question the ontological perspective of current 

mathematics education thinking in relation to how mathematics education has historically 

developed against the backdrop of mathematics. Our thinking about this relationship has been 

greatly influenced by early Greek thought. For example, early examination of mathematical 

truths developed from the need for articulation and demonstration of those truths (Bishop, 1988) 

and that mathematics, as viewed today, can largely be framed on the foundation of the Greeks 

(D’Ambrosio, 2009). However, in the evolution of mathematical thinking, constructivist thought 

suggests learners may never arrive at some a priori body of mathematical knowledge (Jaworski, 

1994) as, particularly in the CML classroom, mathematical knowledge is established socially 

(Ernest, 1998; Jaworski, 2001) through context, dialogue, and activity (Lave, 1993). 

This foundation on Greek thought persisted, and still influences discussion of 

mathematical ontologies, through the modern era. However, recent thought in mathematics 

education occurring in recent decades argues that absolutist pedagogies—while important in 
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framing an ontology of mathematics education—are not importantly influenced by concerns for 

culture (Bishop, 1988; Wax, 1993), language (Sethole, Goba, Adler, & Vithal, 2006; Wells & 

Arauz, 2006), and communities of practice (Lave, 1993; Lave, Murtaugh, & De La Rocha, 1984) 

in the secondary classroom. That is to say, as mathematics education researchers, the question of 

how one thinks about ontologies is crucial because it is from reorienting the ontological 

perspective that one can position CML in the field, as one shifts from perspectives that regard 

mathematics as absolute or formalist and is devoid of social awareness in the role of the 

individual in arriving at their own mathematical meaning. 

From the data gathered during this study, several spaces that describe the general 

conceptions governing the plurality of what “can be applied to the claims and judgments of [the 

classroom] discourse” (Timmons, 2006, pp. 29–30) arose as characteristic of the ontological 

spaces teachers of CML and their students inhabit. These spaces govern, through discourse, 

navigation through the collection of objects, properties, facts, and conceptions—the members of 

the spaces. Further consider that the members of the spaces include the “customs, norms, 

attitudes, sentiments, and the aspirations that characterize” (Bernstein, 2010, pp. 73–74) human 

social interaction, relationships, and inquiry. 

These ontological spaces comprise the foundation on which its members perceive reality. 

In mathematics education, these are the communities of practice constructed of cultural and 

social lived experiences by which mathematical meaning-making is not established a priori but 

instead via human social interaction, relationships, and inquiry. Learning mathematics is a 

process in which students continually revise their understanding in response to cooperative peer 

analysis and debate about mathematical relationships. 

Ontological Space 
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Ways to transmit culture. This first space, ways to transmit culture, encompasses two 

practices that describe how culture is maintained, revised, and mediated. The first aspect, (a) 

bottle-necking life experiences, addresses the actions by which students participate in, and are 

challenged by, life opportunities. The second aspect (b) is maintaining the status quo. This 

aspect builds policy barriers and decisions onto messages the dominant culture wants to transmit 

and how the present states of these policies and decisions serve as status gates. The third aspect 

supported by data, image-building ethical pedagogical tools, briefly portrays how culture is 

revised and mediated through image-based ethical-pedagogical tools. These illustrate the 

processes involved in sharpening students’ self-image in which both student and teachers engage 

to develop social skills. 

Culture is maintained by bottle-necking life opportunities. Maintaining culture by 

bottle-necking life opportunities is about the actions in which students participate, and are 

challenged by, life opportunities. Consider the decisions students make to attend school even 

when it is not enjoyable. During a June assembly on school issues at Giambattista Vico 

Secondary School, several students unexpectedly entered the gymnasium late. This was brought 

to the attention of everyone present, as a different group of students chanted “Skip; skippy!” The 

negative badinage from students notwithstanding, the late students recognized their poor 

judgment and did not give up, returning to school. During another assembly a few weeks later, 

still at Giambattista Vico Secondary School, an administrator mentioned that graffiti belonging 

to the MS13 gang was found; the administrator continued, emphasizing the school’s anti-gang 

policy and a $100 reward for information. With students in such an environment, no wonder they 

may not feel challenged or engaged to participate in classroom activities in productive ways. 

Student badinage, poor judgment, gang violence—these are barriers that delay and ground 
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students to life opportunities. When students chanted “Skip. Skippy!” there was no response 

from adults; chastising students during an assembly as a response to graffiti tagging dictates 

rather than yielding to suggestions from those affected on how to handle the issue; low student 

morale in the classroom benefits no one and keeps students from seeing that teachers do care and 

society does offer thoughtful ways to deal with conflict. 

Culture is maintained by maintaining the status quo. This second aspect of ways to 

transmit culture describes policy barriers and decisions onto messages the dominant culture 

wants to transmit and how the present states of these policies and decisions serve as status gates. 

These jointly guard the dominant culture from minority use. In this respect, as a way to transmit 

culture, dominant culture is not necessarily transmitted but maintained by efforts to continue the 

hegemony of the status quo. These policy barriers, decisions, and messages from the dominant 

culture jointly guard the dominant culture from a minority one. In this respect, as a way to 

transmit culture, dominant culture is not necessarily transmitted but used to maintain the 

hegemony of the status quo. In considering the meaning of a status gate I am discussing 

traditions, such as the societal belief “that well-educated people think they don’t need to know 

much math, but that having some knowledge of it is used to keep people from being more 

educated” (Follow-up interview with Gwen Cooper on October 30, 2010). This emerged across 

coded data from observations in Owen’s and Gwen’s classrooms and referenced largely how 

educators shape students through an enculturation process in which they (students) begin to 

believe in, belong to, participate in, the specific practices of a (predominantly white) culture. 

This "playing/being white," as evidenced during a school assembly, develops as students are 

awarded special privileges for achievement or made to feel as part of a "subculture" depending 
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on which grade or classroom they belong to (June 14, 2010 observations with Owen Harper and 

October 11, 2010 with Gwen Cooper). 

Culture is revised and maintained through image-building ethical pedagogical tools. 

Image-building ethical pedagogical tools’ primary role is to provide a medium through which 

culture is revised and mediated. This examines the process of image-building; these may be 

thought of as a method to help students with self-image building, specific to a CML classroom. 

This involves means by which “teachers try to work with students so they may become positive 

self-managers and begin to recognize for themselves their own positive/negative behaviors” 

(Gwen Cooper, October 14, 2010). A part of the image-building process looks at metaphorical 

concepts in the classroom. For example, a high level of student respect, social interactions, and 

positive peer-group work flows smoothly and students know what is expected of them in 

established roles. 

Classroom organization and reorganization are easily maintained so that students quickly 

arrange into groups to be better able to dialogue with each other. Consider the following 

example, from Owen’s class (June 29, 2010), which started as Table 2 was outlined on the class 

whiteboard. 
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Table 5 

Class Rules 

Poverty-hidden rules Middle- & upper-class-hidden rules 

I know how to get someone out of jail. I know how to hire a private lawyer to 

handle criminal or civil matters. 

I know how to physically fight and defend 

myself. 

I know how to reserve a table at a fine 

restaurant. 

I know how to entertain a group of friends 

with my personality and stories. 

I know how to set and decorate a table with 

centerpieces, place mats, and napkins. 

I know how to get put on public assistance. I know how to evaluate and purchase 

appropriate medical, life, disability, auto, 

or other kinds of insurance. 

 

The point here was not to make students feel badly about themselves but to focus on what 

it takes to be in each of the groups. Owen’s classroom discourse considered whether and how 

students will be able to overcome their membership in the poverty group and begin participating 

in the middle class by acknowledging such hidden rules. And, while the lesson was not overtly 

mathematical in nature, it did involve image-building as an ethical pedagogical tool, as the class 

realized that people in poverty are spending money to live and on survival items while the 

middle- and upper-class group tended to spend on luxury items or things that were not needed for 

survival. Through this process the teacher mediated students’ understanding of social structures 

present in society and worked with them to revise their cultural understanding as they considered 

how one begins to understand and question the difference between the two groups’ hidden rules.  

This development of qualitative assessment by the teacher draws on students’ qualitative 

reasoning abilities and capacity for inquiry. 



www.manaraa.com

35 

Qualitative assessment plays an important part in the image-building process of the 

students in a CML classroom. Qualitative assessment may take the form of presentations, papers, 

written self-assessment, or rubrics. Through such assessment, students may have to do the same 

mathematical practices over and over, the teacher may mark and verbally assess that practice, 

through feedback encouraging students to modify their practice until they are more adept. The 

goal is that both teacher and student will know that the student’s understanding is where it needs 

to be. The idea of image-building tools as metaphorical is that the form of pedagogical tools 

deals more with social organization and interactions to contribute toward the image-building 

process of student–teacher and student–student interactions and camaraderie. For example, in 

addressing the notion of competition for college scholarships, Owen suggests, during a post-

observation follow-up, for educators to support their students negotiation and understand of their 

own image as “what they don't know is how do you go about it, and making them adhere to a 

middleclass, white, fully fed, fully healthy person's world isn't going to match that 

underprivileged, underrepresented kids world. Those are two separate and distinct places. You 

can't expect this group to just -- to plop them in here and say, oh, you're going to be fine.”  

The Bardo. The Bardo is a state in which existence is located between two extremes. In 

the context of this study, it becomes a continuum, or timeline, of individual experience with 

CML. It is the gap that exists between being completely, critically mathematically illiterate, and 

fully literate. As a space that individuals pass through, it is charged with the adversity and 

challenges that individuals confront as they progress toward the complete experience of 

becoming fully developed in the understanding necessary for CML. In the state of Bardo, both in 

the cognitive and the psychological sense, one experiences their own false beliefs, fears, and 
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negative emotions that prevent them from being fully developed, mathematically literate 

individuals. 

In describing her own interpretation of the Bardo as an ontological space, Gwen 

comments that  

It’s the positive mathematical development of students as a process students become fully 

aware of how to become mathematically successful [and includes] … developing 

students' sense of mathematical confidence by undoing the damage from previous math 

teachers. This is something [I] get better at year after year and can thus work better 

towards helping students achieve mathematical improved knowledge. One of the goals … 

is also getting students to take more responsibility, mathematically and otherwise, for 

themselves and to move forward in personal growth.  Similar to the process of a parent 

helping their toddler learn to walk: first there is the parent holding the child as the child 

walks, then gradually the parent lets the child go as the child becomes more aware, 

recognizes more, that she can be self-independent. … The idea [is] that it's a process of 

the student unlearning bad math behaviors, of the student becoming more mathematically 

independent more literate. That for the teacher it is a process of being patient with the 

process of getting to know the student, developing a kind of "radar" by which I can sense 

if kids are there.  

(October 22
nd

 and 29
th

, 2010) 

 

Another document, from a professional development Jack attended, frames the space through 

which students develop critical mathematical literacy countering illiteracy as a meaningful 

barrier to be overcome: 

When a student is in this course, they should not ever have to ask, “When am I going to 

use this?” Every activity incorporates meaningful, engaging and enjoyable uses of 

mathematics that can be applied to life outside of school. That is not to say that it is an 

easy course to go through. This is, in essence, a course in critical thinking through 

mathematics. One of the major challenges for students is to struggle long enough to 

develop their critical thinking skills sufficiently to be successful. It can be quite 

frustrating to think that one understands all that there is in a situation, only to find that 

there is an entirely different point-of-view that went unnoticed. With time and patience 

that barrier can be overcome in all students. … 

 

Success is possible for all students. This is a critical aspect to the philosophy of all 

courses, but is especially important here as many students in this course will not have had 

success in mathematics before. There are numerous opportunities to demonstrate 

mathematical skills in a variety of ways and it is important for students to focus on their 
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learning and not their marks. …When a student has successfully completed this course 

they will have enjoyed mathematics, possibly for the first time in years, they will have 

learned about mathematics as a tool for critical literacy outside of school. 

 

These data frame the idea of a Bardo as beginning when a student first experiences a mediocre 

math teacher; that at that time, the student's sense of mathematical wonder gets reduced to 

minimal and it is then that students develop and form their resistance to positive mathematics 

instruction.  

While the student must make his or her own progress through the Bardo, his or her 

teacher can ease the student’s resistance by undoing the negative mathematical self-image 

produced, although not exclusive to, previous negative math experiences by supporting and 

guiding students. Consider how the student’s negative mathematical self-image is supported by 

self-delusion (“I’m not good at math”; “I’ll never understand”; “I quit now. It’s too difficult.”) 

and the need to defend one’s self from our own self-fears which twist and turn students’ 

mathematical experiences into acceptability blocking students from truly knowing a positive 

mathematical self-image and experience for what it is, instead of what they need/want it to be. 

In speaking of the journey that students and teachers map toward reversing negative self-

image in terms of mathematics, Jack comments (December, 2010) as follows: 

“Everyone has the capability to understand the importance of mathematics on their own 

terms. And that could mean any number of different things. There's certainly an 

environment aspect of if they have parents that are supportive of the value of math, or if 

they have parents that are math-phobic, then that -- how could that not have an influence. 

I am quite convinced that if you have supportive parents, you have a better opportunity to 

develop those math skills than if you don't [and those math] math skills can be developed 

in the right sort of context… One context [is challenging that phobia] and [I tell my 

students to] talk to your parents and list all the things they do that are related to math in a 

day. If that happened right off the bat, if a child in junior kindergarten comes home and 

says okay, mom or dad, listen, I've got this assignment you've got to do and help me out 

here. What are all the math things you do in a day? And if they start thinking about, if the 
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parents think about that for 12 or 13 years, then eventually, it will sink in that they do a 

lot of math.” 

 

 The Bardo emphasizes the nature of non-duality; that is to say, we overcome negative 

self-image by not experiencing it; we come to understand mathematics by experiences not 

realized as mathematics. Everyday our students are interacting with mathematics that is all 

around them. It’s part of the world and so many of an individual’s experiences with math are not 

even realized as math, particularly as with children. Consider the practice of counting: when one 

child complains that someone got more than they did; “They got two and I only have one.” In 

this, math is experienced but it is not yet as separate as it will inevitably become as when 

mathematics becomes a subject in school.  

Often, however, non-duality will not be recognized or suggested and, when someone is 

only trained in teaching mathematics, the structure and content of that teacher’s instruction will 

further separate math from the real world where it exists around us and impress upon students 

opportunities to develop negative associations with math and to have them develop an identity 

that has them regarding math as something they "do not like" or "are not good at". The relation to 

the Bardo is that in recognizing the negative mathematical self-image as projections of the 

consequences of prior experience, which have been negatively reinforced through the actions of 

an inept teacher, in overcoming these past delusions math can be experienced in a new way in 

that it is not bad, separate, or an enemy--it is something that exists and can be understood. That 

it is something to be curious about and study and that, guided by a good instructor, one can learn, 

appreciate, and approach with an openness that is not marred by delusion/fear. It is then part of 

the role of the CML teacher to help students re-connect with math and to approach teaching in a 

way that helps students understand the subject matter as it relates to, and is experienced by them. 
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That the teacher can help students find new meaning and a positive mathematical self-image so 

that learning can take place positively and students recognize their own style of learning to more 

clearly see and direct their learning in more authentic ways. Connecting with that more direct 

and authentic means of learning was revealed through my data as the existence of two Bardo 

realms: cultural and social. 

The cultural Bardo. The metaphor of the cultural Bardo begins with communities. These 

communities start with 

a very close-knit group of people when [a student is] growing up. That means a small 

neighborhood, and your family and friends. However, when you begin college, that 

community widens; as you meet more people, and the more educated you become, the 

bigger the community. As that community increases, the smaller the center community—

who you are—decreases. (Owen Harper, June 8 Interview, 2010) 

And on the basis of initial cultural Bardo formation: “It is shaped during [the student’s] 

childhood and familial environment. If Mom and Dad were not active in advancing their 

[child’s] education, learning of mathematics is going to get set aside” (Owen Harper, June 17 

Interview, 2010). In interpreting a student’s status in the cultural Bardo, Owen said, 

You can move from lower class to upper class or from the underprivileged to the 

privileged…then can go back and help others to do the same. Through education and 

hard work, you can move into this privileged class but doing community work and 

helping others enables you to not lose your roots, and not lose who you are. (June 8 

Interview, 2010) 

In understanding the cultural Bardo, recall that the individual’s projections—the false 

beliefs, fears, and negative emotions—began with the initial negative experience developed by 

the inadequate teacher. However, the journey through the Bardo presents opportunities for 

individuals to discard these past delusions and to approach and experience mathematics in a 

positive manner. With a gifted teacher—be it in mathematics, driving, or cooking—students’ 

curiosity can be stimulated so that these negative feelings instead inspire confidence. In CML, a 
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gifted teacher helps students appreciate and reconnect with mathematics in ways that help them 

understand how mathematics can be positively experienced in more personal and authentic ways. 

The social Bardo. Although the cultural Bardo embodies students’ beliefs and emotions, 

which are established and reinforced through negative interaction, the social Bardo consists of 

metaphor, physical locations, and processes that influence student passage. The social Bardo 

locates resistance to society, possibly by choice, and transformation through teacher guidance. In 

this social context, choosing to resist is categorized, for example, as being the first in your family 

to attend high school, or even making it past the awkward, adolescent educational stage. 

I asked about Owen’s school. “It’s 100% Title I, with about 40% Native American, 40% 

Hispanic, and the rest a mix of African-American, Caucasian, and Asian, the smallest ethnic 

group.” We discussed some student-produced materials that address poverty, border crossings, 

and biology. After reading the part on poverty, I wondered what it felt like to be the first in your 

family to attend high school and mentioned this to Owen. “Several of my students had previously 

dropped out of eighth grade but are now in my class. Even many of their parents did not finish 

high school.” He added, “these first-generation students are the future. [Around here] it is 

[remarkable] to be the first person in your family to attend high school” (June 10 Observation 

Fieldnotes). 

On the matter of non-choice resistance, the categories in the social Bardo are poverty, 

prison, “the Rez” (Native American reservations), Title I, and homelessness. Poverty is situated 

across several data points: 
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Figure 6. Poverty data sample (adapted from Curriculum Development Materials, Maria 

Montessori High School, June 9, 2010) 

The text says, “poverty only exists in big cities,” but it also affects Native Americans on 

reservations. In collected data regarding social justice projects at the Mathematics Department at 

Heinz von Foester High School: 

In third-world countries, poverty is a big part of life. A strong woman referred to her 

experience, saying, “Poverty is like the blood through my veins.” Poverty has been there 

since before she was born, and she continues to struggle to keep her family fed, safe, and 

alive. She said she would starve to keep her grandchildren alive. 

Poverty is watching your mother, father, and relatives die in pain. Starvation and disease 

often lead to death. Grandfather and grandmother crying out, wishing for death because 

they can no longer live in poverty. Poverty is watching your grandchildren die in your 

arms and you can’t do anything but cry. (Observation Fieldnotes, December 2, 2010) 

Prison and the Rez are locations of existence in the social Bardo. The common thread among 

these categories is that they encompass resistance-not-by-choice. By this, I mean that inhabitants 

often have not chosen to permanently reside in these locations. The Bardo description of prison 
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creates challenges for student and teacher. For example, students who have a family member in 

prison have been categorized by society as unwanted or undesirable; similarly, inhabitants of 

Native American reservations have historically been free to participate in their respective 

societies and traditions, whereas, contemporary society has structured borders around these 

cultures and removed indigenous traditions. 

One way in which the Rez category presents itself is when speaking of professional 

pedagogical challenges. 

The issue of “the Rez” comes up during a department meeting. Several mathematics 

teachers pose questions [critical of new policies] about the Bureau of Indian Affairs. 

Teachers discuss the issue of [getting speakers of Navajo as teachers to address] bilingual 

subject-content acquisition from students who transfer students from “the Rez.” 

(Fieldnotes, June 25, 2010) 

 

Michael: Could you speak to some of the social justice topics involving indigenous 

peoples? 

Owen: [One of] my students did a mathematics project on native peoples’… workers’ 

rights and pay as well as conditions. … We got onto the topic of the reservation. We were 

… talking with students from the [Navajo] Nation about some new programs there … 

[such as] the possibility of free solar and high-speed Internet. The students pointed out: 

Why would I need high-speed Internet if I don’t have a computer? And, what good does a 

computer or TV do when we still have no electricity?” (Owen Harper, June 25 Interview, 

2010) 

The social Bardo theme of homelessness occurs in numerous data points across several 

participants. In one instance, the theme was used as a setting for a geometry problem. 

The teacher begins today’s lesson, which is about exponential growth. Gwen writes y = 

ab
x
 on the OHP, and asks the students which variables are the start- and multiplier values. 

The students reply. Gwen continues by asking what they know about tuberculosis [TB]. 

“It’s a disease that affects the lungs!” shouted one student. Gwen Cooper asked a student 

to read the text and students gasped when they heard that one-third of the world’s 

population is affected by TB. 

“It’s not treatable,” a few students called out, and there was discussion about access to 

health care in different countries. Continuing, the teacher explained how many homeless 

shelters in these countries are run by nongovernmental organizations and people have to 
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sleep on mats. Often, these shelters do not even meet UN public-health standards for 

refugee camps (the text of this problem is in Appendix D). The teacher then asked 

students how many sleeping mats, which are 2 m x 0.75 m, will fit on the shelter floor. 

Students calculated the time, in days, of the number of people (hypothetically) infected 

with TB.  

 

In plotting the values, students use their results to interpret the graph as approximately 

exponential. The teacher outlines several students’ solutions (diagrammed layouts of 

mats on the floor) while the rest calculate the total available floor space. They then 

compare the calculated rates of people per square meter in the shelter to UN standards for 

refugee camps (4.55 m per person). (Classroom Observation Fieldnotes, October 6, 2010) 

 

Finally, the last social Bardo space is that of resistance-by-choice: transformation. During a 

professional-development session with his department, Jack Harkness indicated that this theme 

came up. In speaking to the positive effects expected of his 18 teachers, the following was 

discussed. 

Successful implementation of policy depends on the professional judgment of educators 

at all levels, their ability to work together, and to build trust among parents and students. 

It also depends on the continuing efforts of strong professional-learning communities to 

share their understanding of [content and] policy in developing effective implementation 

practices. [Student success] depends on creative and judicious differentiation in 

instruction to meet the needs of all, and on committed guidance from … leaders, who 

coordinate, support, and instruct … teachers. (Classroom Observation, Giambattista Vico 

Secondary School, November 19, 2010) 

Gwen Cooper recalled a personal conversation with students. “Often, when I speak with 

my students about my experience at [a previous school] and how I felt disconnected and that 

there wasn’t a sense that my students needed to know mathematics.” During a parent–teacher 

conference, one community member said, 

Well, those poor kids. Don’t they know that they are going to need [school mathematics]? 

Don’t they know that to be successful, to move out of [the low SECS of the 

neighborhood, school, and students] and to succeed that you need to know mathematics? 

Poor them; they do not understand that. (Gwen Cooper, October 14 Interview, 2010) 

In response, Gwen Cooper replied: 
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Maybe my willingness to learn mathematics is that I am coming from that situation and 

want to improve, work harder, and understand more. … It reminds me that [mathematics 

does hold] high status and it’s socially acceptable to know about it. In my college years 

there wasn’t a ton of professional women, and most of them who went into high-powered 

professions were choosing medicine or law—for financial and status reasons. I try to 

encourage all my students to become agents of change, whether it’s as an engineer, 

mechanic, an astrophysicist, or something else. (October 19 Interview, 2010) 

For Gwen Cooper, it was important to address equity issues with her students. The 

district had decided to close her school, which had not met targeted guidelines; however it was 

later revealed that other issues were the problem. The structure of the school was unique: some 

mathematics teachers got to know their students and families well. Gwen Cooper also personally 

felt that it was imperative to stand up for her beliefs. As an activist/role model, Gwen Cooper 

taught the students important issues beyond mathematics. 

The critical mathematical literacy narrative. The Critical Mathematical Literacy 

Narrative is the third kind of space in which existence was mathematized through the data. The 

narrative consisted of three processes: contexts, action, and results of actions. Contexts position 

and situate the narrative in everyday social, cultural, historical, or factual environments. Action, 

in the context of the Critical Mathematical Literacy Narrative, is where teachers position students 

to engage in inquiry-based analysis of the context. This is the heart of the narrative, and where 

most mathematical understanding occurs. Results of Actions is a summarizing structure in which 

teachers regroup students to consolidate students’ mathematical understanding of what they are 

analyzing. 

Contexts. We can think of the context as the location situated by everyday environments 

that students examine through the further parts of the narrative. Data suggest that contexts may 

be divided into four different environments: 
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• Factual—based in actual or released public data from government, nongovernment, or 

private institutions (e.g., tuberculosis death rates released by the Wisconsin 

Department of Health Services); 

• Activism and counterculture—as resistance to the status quo and hegemonic cultural 

identities; 

• Historical—involving conceptual ideas or beliefs, events, or sociohistorical 

institutions (e.g., the American Civil War); 

• Popular culture—as represented in media, music, television, film, or newspapers. 

Factual contexts. One example of a factual context demonstrates a class-created project, 

shown in Figure 7, which investigates the proportion of capital convictions in death-penalty 

states where the prosecuting district attorney was Caucasian, African-American, or Hispanic. 
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Figure 7. Ethnicity of district attorneys 

 

Another example of a factual context involves a lesson conducted on October 25, 2010, 

in which Gwen Cooper had her precalculus students use data from the U.S. Bureau of Labor 

Statistics to compare rates of change across gender groups and years (see Figure 8). 
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Figure 8. Comparing rates of change across year and gender 

 

Sample graphs shown in Figure 9 were displayed to promote further discussion: 

 
Figure 9. Sample graphs exhibiting gender income equity across years 
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Activism and counterculture contexts. Activism and counterculture contexts are 

concerned with everyday events and environments in which CML can be used. For example, 

Gwen Cooper gave a speech at her local board of education in response to a town meeting that 

announced the closure of several district high schools, including hers. The board claimed all 

students would be treated equally in decisions about their replacement school. Gwen Cooper, 

along with other mathematics teachers, was very concerned. The entire speech is documented in 

Appendix G. Another example of a counterculture context can be seen in Jack’s comments on 

society’s acceptance of mathematics phobia: 

One of the things that’s frustrating is that people don’t see how much they actually use 

math [on a daily basis]. If they did, then they would value it more. [To counter this] one 

of the things I’ve occasionally done with 10th and 11th grade students is [have them] talk 

to their parents and list all the things they do that are related to math in a day. Just think if 

that happened in junior kindergarten. A child comes home and says okay, Mom or Dad, 

I’ve got this assignment. I’m supposed to think of all the math things you do in a day. If 

parents and kids did this for about 12 or 13 years, it would sink in that they do a lot of 

math. (December 16 Interview, 2010) 

Historical contexts. As a context in the Critical Mathematical Literacy Narrative, 

historical situations and environments are represented by conceptual ideas, beliefs, or events that 

may be sociocultural or sociohistorical in nature. There are several instances when participants 

used such conceptual material for lessons. First, Owen cited contexts of a “representative 

republic;” “free market economy;” and history books as “written by the winners.” He alluded to 

provocative themes surrounding social acceptance of the Patriot Act in a historical context 

(Observation and Follow-up Interview, June 7, 2010). Above are examples of Gwen Cooper’s 

use of historical data from the Bureau of Labor Statistics as a lesson for her precalculus students. 

Another example of an historical context can be seen in Jack’s use of an article claiming 

that the odds of life on a newfound Earth-sized planet are 100%. His ultimate goal was to 
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encourage students to approach mathematical thinking not by explicitly seeking correct answers, 

but to “really think mathematically about what the article means and what the author is trying to 

say and, how the article can be supported with mathematics” (Follow-up Interview, December 2, 

2010) 

Popular culture contexts. Popular-culture contexts are represented by environments that 

students may find in everyday, lived society; specifically, they may stem from music, television, 

films, book, or other media. Early in observational data, popular-culture contexts consisted of 

situations such as “going green,” and class discussions of economic- and societal value or the 

futility of wind farms versus coal-fired power plants (Classroom Observations, June 8 & 15, 

2010, Maria Montessori High School). 

Popular-culture contexts in Gwen Cooper’s mathematics classes encouraged students to 

reflect on contemporary affairs from a mathematical perspective. During one interview, Gwen 

Cooper recalled a lesson of particular interest. 

A couple years ago, my class was examining exponential growth and decay. I had been 

reading something about Zimbabwe. … This lead to a discussion about what a currency 

is [and the role] of inflation, which is a tricky thing for students to understand, and the 

exponentials are a challenging mathematics topic. But it was really interesting to look at 

those numbers … thinking of the implications on [bordering] nations when the currency 

was skyrocketing with inflation. I thought, oh, I can use that in my classes. (Follow-up 

Interview, October 30, 2010) 

Here, the current-affairs aspect of the popular-culture context was not important, but by using 

this relevant topic, Cooper was able, through a means appropriate to her class, help her students 

understand exponential growth and decay. 

Actions. As represented in the data, there are six different kinds of Action that take place 

in the Critical Mathematical-Literacy Narrative. This second part of the narrative is where 

teachers work with students through a process of connecting their activities to the narrative’s 
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context. Ideally, the teacher can monitor pedagogy to help students arrive at mathematical 

understanding through several possible solution paths. This is the core part of the narrative; a 

point at which the mathematical process is rooted in several styles of thinking and learning and 

when classroom learning should take on characteristics of dialogue in which meaning-making 

can be constructed, not by blindly accepting the meaning given by peers, the teacher, or even the 

curriculum, but through social negotiation (Burton, 2004). 

Creating awareness. Creating Awareness situates mathematical thinking and classroom 

learning in objects with which there may not exist much cultural or social understanding of how 

or why something is happening, or perhaps why it is an important topic for consideration. The 

first instances of this in the data stemmed from Owen’s discussion of paper companies that 

prevent the planting of hemp: the class followed [Owen’s remark, “How do we know the 

statistics [on hemp plantation prevention] are correct?” They questioned why it is illegal and 

what process would be needed for resistance to paper companies’ lobbying to prevent permit 

shifts in existing laws (Classroom Observation, June 7, 2010). The mathematics taught that day 

in this context were not traditional mathematics skills but more about acculturating students to 

critical thinking and encouraging argumentation skills, as demonstrated by their comments on 

how to decide if “the statistics are right” and what skills would be necessary to provoke change. 

Gwen’s use of creating awareness took place over a series of 3 days for her algebra 

students. She started the unit with a graph of CEO pay, shown in Figure 10. 



www.manaraa.com

51 

 
Figure 10. CEO pay 

The lesson continued and became quite interesting as discussion moved to address Table 

6, below. 
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Table 6 

Inequality Index 

 Percentage of U.S. total income in 1976 that went to the top 1% of American 

households: 8.9; percentage in 2007: 23.5. 

 Only other year since 1913 that the top 1% share was that high: 1928. 

 Combined net worth of the Forbes 400 wealthiest Americans in 2007: $1.5 trillion. 

 Combined net worth of the poorest 50% of American households: $1.6 trillion. 

 U.S. minimum wage, per hour: $7.25. 

 Hourly pay of Chesapeake Energy CEO Aubrey McClendon, for an 80-hour week: 

$27,034.74. 

 Average hourly wage in 1972, adjusted for inflation: $20.06; in 2008: $18.52. 

 Median household income in 2008 was $50,303, according to Census data. Half of 

American households had income greater than this figure while half had less income. 

Note. Adapted from “Inequality by the Numbers,” by Institute for Policy Studies (2009). 

The lessons examined salary and wage data forming three plausible conjectures per group 

(in the precalculus class), revising their conjectures as class discussion evolved, and finally 

reassessing their working conjectures to address issues such as “There are less White people 

working for minimum wage than others;” and, “More Whites are working;” and, more “men 

work full-time and more women work part-time” (Classroom Observations, Heinz von Foester 

High School, October 11, 2010). In this action, the space of awareness was created; however, as 

a researcher I felt it would be hard to position a lesson with a more advanced class such as 

calculus or IB HL 1/2. The real value in this Action is that the teacher framed reasons for 

decisions made by society, culture, and elected representatives through mathematics instruction. 

Mathematically interpreting data. Mathematically interpreting data is the action in which 

classroom discourse takes shape in a space through which mathematical interpretation may 

solidify relations between the mathematical understanding and ordinary language. In other 

words, mathematical understanding in the classroom brought about through student interaction, 
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discussion, and struggling with the environment in the context deepens students’ comprehension 

into meaning that they understand in ordinary language. The action of mathematically 

interpreting data occurred in two differing modes of discourse that emphasize the students’ 

understanding.  

As recognized by Kinneavy (1971), these modes of discourse are expressive and 

persuasive discourse. Expressive discourse in the mathematics classroom may include activity-

composition books, mathematical binders or journals. Expressive discourse may be typical 

classroom conversation that comes primarily from students questioning a mathematics problem, 

or statements such as, “I just don’t get it,” and prior experience with school mathematics (as 

organized by a mathematics course grades/transcripts, comments from prior teachers and 

students, and statements from parents about their child’s mathematics ability). This example of 

expressive discourse draws on statements from students during Owen’s algebra class’ use of 

national crime data provided students with the following verbal example: 

 If 18 year-olds account for 92,387 violent crimes, and the total number of violent 

crimes was 327,619 in the U.S., what percentage did the 18 year-olds commit? 

  According to the data, juveniles are responsible for one-quarter of all crime. How 

much crime is committed by adults? 

Each group was given a different section of data about violent crimes, offenders, SECS, 

gender, etc. Students work with their groups to summarize the content of each of their 

sections. They write in their math binders and one group member tries to consolidate the 

others’ ideas. 

The teacher walks from group to group, quietly working to help them. He patiently works 

with some students who struggle more than others, pointing to words and bolded 

headings in the data sections they were supposed to read. 

Once groups have considered possible answers to the two questions, and what they find 

interesting in the data, the teacher has each group write their work on the whiteboard. 
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One student is reluctant and asks “Do we have to answer them?” “Yes,” the teacher 

replies. The student responds that she doesn’t like math, and, “This part is too hard.” The 

teacher tries to persuade her that “the class is trying to do something different” through 

examining data sets that highlight violent crimes. This is an important issue in [the 

neighborhood] and he wants them to consider the possible causes. 

There are two instances in this sample that make it expressive. First is that students are using 

their journals to formulate and write down ideas, and second, when a student comments on 

dislike of mathematics, the teacher responds that the class is trying to mathematically understand 

a serious community issue. 

Another mode of discourse is persuasive. Persuasive discourse often takes the form of 

advertisements, political propaganda, geometric proofs, trigonometric identities or relations 

(whether true or in-the-process of being proved), declarative axioms, lemmas or theorems, and 

mathematical argumentation and generalization. Ultimately, the goal is to elicit specific action 

such as believing something is true (or false). Previously, we have seen preliminary samples of 

persuasive discourse in Figures 6 and 9. Here, the idea was to mathematically convince others 

that the products (the paragraph on poverty; graphs of longitudinal minimum-wage data) can 

support the issues under consideration through arithmetic and visual representation. Consider a 

further sample taken from Heinz von Foester High School’s students. 

The teacher reintroduces some data from a previous lesson that looks at the TB/HIV 

rates, and asks students to work with this data from their [mathematics journal] books. 

Gwen emphasizes that this will also be a tutorial using the TI-83s. A transparency with 

the following table (data from the WHO documenting the number of TB/HIV incidences 

in several regions) is placed on the OHP: 
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Table 7 

Data from the World Health Organization on the Number of TB/HIV Incidences 

Y 39 47 5404 28432 34705 90881 178,858 309,088 852,266 

X 0 1 2 3 4 5 6 7 8 

 

The teacher demonstrates how to use the “Stat” function on the overhead TI. Some 

students struggle but they get help from others in their group. The objective is to use the 

“stat” > “calc” functions to symbolically represent the exponential equation. After several 

students present their work on the OHP, the teacher models the equation as           
     . Discussion continues around interpreting what a, b mean. Students plot the correct 

equation and consider what might fit as an appropriate model of the data and why, and on 

what domain it might be best modeled. The teacher comments how the students will be 

the future scientists who will be creating these mathematical models. (October 7, 2010) 

This sample is highly persuasive in several ways. First, there is discussion as to how to 

best model the data through technology and exponential functions, and second, at the end of the 

lesson, the teacher shows caring persuasiveness in encouraging students about their futures. This 

sample can also be seen as persuasive as it involves several of the students at the OHP, trying to 

convince their peers why their solution is the best model for the table data. 

How to make something happen. Perhaps this action could be a result of action, however, 

I feel it fits well with the other Actions in that from the event and meaning generated in the 

Critical Mathematical Literacy Narrative, this particular action creates, or enables the 

opportunity for, awareness vis-à-vis mathematics. For the most part, this action was evident in 

classroom observations with Owen and Jack; however, this action only manifested itself in 

Gwen’s work through interviews. 

In Owen’s class, this Action was embedded in topics such as reasons to participate in 

boycotts, why petitions might be created or needed, and the worker rights of electricians, 
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welders, plumbers, and other skilled tradesmen. An interesting class discussion from Jack’s class 

started on pollution and expanded to: 

Discussion [about what is] seen as recyclable, compost, reusable, or hazardous. The class 

seeks to define “recyclable” as make into new things; “compost” as make into soil or 

fertilizer; “reusable” as used already, and used again; and “garbage” as landfill dump. 

There is also discussion on what happens to recyclables/garbage, and students use 

clickers to decide which of these options is the best way to deal with garbage. Results 

from the clickers are projected on the Smart Board. The largest percentage goes to 

recycling. After some group discussion, group leaders approach the board and write their 

responses “to prove” why they believe their answer is the best. 

Other proposals form Jack’s class involved student-proposed solutions to gun violence, and 

strategic use of homework and journal entries that answer questions and summarize information 

that was discovered in the day’s lesson, which also challenges students to take action based on 

what they learned about the issue and “make it better.” 

Gwen’s interview data presented this conversation on How to Make Something Happen. 

Gwen: You have to have knowledge of current events and know what’s going on in 

[y]our neighborhood, city, and the kind of concentric circles going out from here. Our 

district, state … I’d call it community knowledge. 

Who are the leaders, what are the issues, and how do they differ from other 

neighborhoods, [for example] … with school-enrollment numbers. Having students look 

at the public-school enrollment numbers for the past years compared to a school over on 

the [other part of town] but not asking them to consider why it is happening—just what’s 

happening. 

Michael: Hmm. It sounds like you’re speaking about a kind of knowledge about forming 

questions or interacting with events within the greater community. 

Gwen: Making observations. Sometimes we’re also starting from a statement or an idea 

that we want to challenge. [For example] Is it true that [local school] has the fastest 

declining enrollment and then should it be closed? So let’s look at whether that’s true. 

You might say it should close, but maybe that’s not the reason. [Teachers] need to engage 

in [our] own experiences or classrooms or situations where your students have been 

challenged [and consider] if oppression has been the result of that. 
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Here, Gwen is speaking about the need for both teacher and student to be prepared 

mathematically for addressing relevant social issues, whether through mathematical or 

sociopolitical means. This is the heart of how to make something happen. 

Creating “answer space.” Recall that what has been discussed so far are the various 

kinds of actions positioned in the narrative. Answer spaces are further actions in that they are 

ontological in nature. Like the other parts discussed so far that are ontological in nature, it is 

through such spaces that teachers, students, and individuals become who we are. These spaces 

shape the nature and method of what is discussed and the means to participate in such a 

discussion. In and of themselves, various answer spaces were evident in the research data. Gwen 

suggested during one interview that answer spaces are “skeletons for kids to hang ideas upon,” 

and that instead of —in the mathematics class—just making observations about data or what the 

numbers are doing, providing such a space for students “gives them a way of saying … I’m 

going to write about this; I’m going to have to think about this and talk about it with my peers” 

(Gwen Cooper, October 14, Follow-up Interview, 2010). That is, for the teacher it becomes a 

space for organizing what they are teaching and looking for opportunities to expand on that, 

whereas for students, an answer space can help to conceptualize mathematical abstractions and 

then organize knowledge into tables, equations, or words. 

It is important to create the skeletons for students to hang ideas on, as without such 

structures our students may not engage or connect the mathematics beyond the numbers. As 

Owen put it, “in my opinion these connections need to flow from the students. … [Otherwise] 

they [simply] offer answers and the teacher simply responds.” For both Owen and Gwen it was 

also important not to focus on a right answer but to ask, “What does that mean?” and, “What else 

would you want to know about this information, data, or concept?” to arrive at an answer 
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through a collaborative student-centered process. In my observations I commented how “creating 

answer space begins to open space for discussion” and provides students with the opportunity to 

engage in thought, reflection, and “explanation and generalization of [their] mathematical 

arguments.” Finally, this category was not coded in any of Jack’s data. Perhaps Jack was creating 

answer space differently from Owen and Gwen. This will be addressed in the discussion section. 

Focusing on difference. This last action was evident across all three participants, but in 

different ways. In Owen’s classes, the process of focusing on difference was pragmatically used 

with students to examine differences between educational-income disparities, what percentage of 

various ethnicities do and do not graduate from high school and why, and conjecture about why 

nationwide incomes range vastly between men and women in the majority of occupations. In this 

sense, it was important for Owen’s students to “get at topics and ideas more [socially] relevant 

than by [Owen] just making up [arbitrary] word problems and asking students to perform 

algorithms.” Thus, by focusing or contrasting differences, students were able to make more 

constructive use of applying mathematics to actual ideas and opinions. 

Gwen’s process was to apply the action of focusing on difference in the setting of her 

calculus class. As we have previous seen with her precalculus class, in Figure 8 (gender across 

years), this idea of focusing on difference was further expanded during a lesson with her calculus 

students. In repositioning the idea for her calculus students, Gwen chose to have her students 

understand the derivative function symbolically and linguistically. To consider such differences, 

questions were posed such as “What do we notice about the comparative rates of change among 

different groups,” and, “What do you observe about rates of change for different years in a single 

group?” Students were able to mathematically justify observations by comparing differences 

through demonstrating and explaining their use of the derivative function. 
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Jack’s use of focusing on difference was also meaningful in guiding students to consider 

and compare differences through mathematical means. In fact, compared to Owen and Gwen, 

data from Jack’s classroom generated six instances of this action. Here, I will briefly discuss the 

purpose of his use of the action. Jack was primarily motivated to get students to compare 

differences in situations they may already be familiar with—through siblings, family, or 

participation in society. For example, using Table 5 (child wages), an algebra class considered 

differences such as which group of people had the lowest/highest income and used mathematics 

and group discussion to explain some possible reasons of the difference. 

Table 8 

Child Wages: Average Income after Tax by Economic Family Types (2004 to 2008) 

 $ Constant 2008 

 2004 2005 2006 2007 2008 

Economic families, 2 people 

or more 

68,200 69,100 70,700 73,500 74,600 

Nonelderly families 71,400 72,100 74,000 76,800 78,000 

2-parent families with 

children 

79,600 77,900 79,900 83,900 84,900 

Lone-parent families 36,600 41,400 42,100 42,700 43,700 

Male lone-parent 

families 

48,100 54,900 57,000 53,300 54,200 

Female lone-parent 

families 

34,000 38,400 38,700 40,400 41,300 

Unattached individuals 28,300 28,800 29,800 30,500 31,000 

Elderly male 28,000 28,800 29,100 31,800 32,900 

Elderly female 25,400 24,700 26,700 26,300 26,800 

Nonelderly male 30,700 31,900 33,200 33,500 34,400 

Nonelderly female 26,500 26,800 27,200 28,400 28,300 

 



www.manaraa.com

60 

Another such lesson was with older students and situated in the purchase of a new car and the 

information provided by the curriculum (see Figure 11). 

 
 

Figure 11. Focusing on difference 

Students were to decide on a purchase based on prior work, taking into account budgeting 

and other problems such as credit loans and purchasing power. Overall, the goals were to 

understand, from a daily quantitative-encounter perspective, costs and reasons why financing is 

more expensive than purchasing, and to think critically about all these issues. 
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Results of action. This last component may also be regarded as the last kind of context 

discussed in the above sections. The results of action position the narrative into two outcomes: 

inductive and proletarian. Briefly, inductive results of action are based on observations made by 

students, the teacher, or a collaboration of the two. This type of result describes patterns, 

functions, properties, or statements based on observations from prior experience. Proletarian 

results of action are based on something important to the individual such as race, heritage, SECS, 

or something of an ideological or political nature. Proletarian results are “folk” results in that the 

individual has created a result that has significant self-meaning. 

Inductive results of action. As manifested in the data, inductive results of action are fewer 

in coded instances than proletarian results of action. This may be due to the nature of the study 

and will be further examined in the discussion section. In the meantime, I will discuss two 

interesting inductive results from Owen’s and Gwen’s instruction, although the theme was also 

present in Jack’s instruction. 

 

 

 

1 
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Figure 12. Relationship of alcohol to domestic violence in San Mateo County 

Inductive results from Owen’s instruction have briefly been highlighted in Figure 12, 

borrowed from a national campaign against domestic violence, and in Figure 14. These data were 

also part of a community presentation against drunk driving, conducted by the school. 

Inductive results of action from Gwen’s classes were situated in the lessons on TB that 

were previously discussed in the social Bardo section. The inductive results during this lesson 

could be seen once her students tried to find the optimal placement of sleeping mats. Recall the 

restrictions on determining the placement of mats: they needed to be 50 cm from a wall and 

another mat and were 2 m x 0.75 m (see Figure 13). 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. TB-mat placement 
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In working on the problem, students observed that was difficult to be 100% certain which 

of their peer’s mat placement was optimal. We can see in Figure 13 that several of the presented 

solutions were similar in their understanding of the problem. However, it is clear in diagram B 

that the solution disregarded the space restrictions. What students were certain of was that by 

figuring out the area of the shelter floor and a number for the space given to each person, they 

could then proceed, perhaps arbitrarily, filling in the space needed for mats. It is interesting that 

in Diagram D, students incorporated the restrictions by creating a barrier 50 cm from the wall, 

which would potentially influence the mats’ placement. 

Proletarian results of action. As briefly mentioned, proletarian results of action are 

considered “folk” results in that their meaning—social, political, or otherwise—has deep 

personal significance to the individual. Owen and Jack had the highest number of coded 

incidences for this category. Gwen’s use of proletarian results of action was essentially captured 

in three examples of protest against the local school board and organizing students in a march to 

create awareness. Owen’s samples were also very political in nature but entirely produced by his 

classes or student groups, not teacher driven as with Gwen’s work. Jack’s samples were less 

political (in motivating students to resist dominant thinking and engage in transformative social 

action) and more about facilitating students’ mathematical skills and knowledge for becoming 

active citizens. Examples of proletarian results of action from Owen’s classes were quite political 

in nature. Previous examples exhibited in Figures 7 and 14. These figures illustrate the class’ 

concern with the issue of racism that influencing a jury’s guilty verdict in capital convictions. 
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Figure 14. Ethnicity and capital conviction 

 

Although this graphical representation highlights how “Being African-American can act 

as an aggravating factor” in such verdicts, it should be noted that the teacher’s role was in 

facilitating where and how to find information, developing arithmetic competencies around 

proportional reasoning, and positioning the sociopolitical aspects in the Critical Mathematica- 

Literacy Narrative. Samples from Owen’s instruction included evaluating the relationship of an 

officer’s rank, the number of deaths during the Vietnam War, and drawing on consequences of 

the Afghan and Iraq Wars. Students also spent time answering and dissecting questions about 

government spending on these two wars and projected spending estimates on the new healthcare 

plan. 

In contrast to Owen’s students’ proletarian results, which involved political 

considerations, Jack’s efforts were guided by social and citizen values he wanted students to gain 

from his instruction and to both think critically and use, or expect to use, everyday mathematics 

tools to participate in a democratic culture and awareness in potential change. Arguments for this 

point are reinforced in two previously exhibited samples in Table 5 and Figure 5. Examining the 
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nature of Jack’s influence on proletarian results suggested he interprets the role differently from 

Owen, whose objective was more political. During the lesson in which the context involved 

Table 5, two particular questions posed to the class resulted in discussion: Why do companies 

use child labor and why do families permit their children to participate in it? 

However, not all results were teacher generated. When there students were determining 

the amount of trash and recyclables generated by the school, the items were counted, weighed, 

and compared. Table 9 shows some of the results. 

Students were to create physical representations for calculations they found. For example, 

one group calculated 35% of the total trash as food waste, whereas another group calculated 33% 

as compostable material. In particular, each student also brought in materials such as plastic 

bottles, cardboard, plastic bags, and grocery-store advertisement flyers to demonstrate how much 

was wasted. 

Finally, I would like to briefly highlight the role of proliterean results in Gwen’s 

instruction. Data coded from observations and interviews with her did not indicate the political 

or democratic-valued approaches of the other two participants. Gwen’s incidences of these 

results were balanced between student and teacher and largely generated around contexts that 

were of particular interest to students. In one example, she started a lesson with the following: 

“Kids! Listen up! I just found out that, in 1998, more restaurant workers were murdered 

on the job than police officers. It’s unbelieveable!” To this, several students cried out, “Is 

this TRUE?” 

“I like your question. We’ll have to investigate how to decide if it’s true.” The class then 

discusses some reasons why the homocide rate might be higher for fast-food workers 

than police officers. Gwen highlights one group’s proposal that perhaps there is a 

connection to location: “What if the location of McDonald’s and similar restaurants could 

be in high-poverty neighborhoods? How would this shape the homicide rate?” 
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Table 9 

Waste Audit Information 

  From garbage bags From recycling bins 

Waste 

categories 

 Bag weight 

kgs (for 1 

day) 

Approx. 

kgs/ 

school year 

Bag weight 

kgs (for 1 

day) 

Approx. 

kgs/ 

school 

year 

Recyclables glass bottles/jars 0.35  2.4  

 metal cans (pop cans) 

& rigid containers 

0.26  1.45  

 plastic bottles & jugs 0.55  0.8  

 plastic water bottles 0.45  3.6  

 juice boxes & milk 

cartons 

0.4  0.4  

 styrofoam packaging 0.5  0.2  

 plastic bags 1.95  0.5  

 classroom/office 

paper 

1.35  45.5  

 magazines/flyers/new

spapers 

2.6  104  

 paperbags/bristol 

board/cardboard 

1.35  8.1  

Compostable food scraps 24.45  0.8  

 paper towels & 

tissues 

6.5  0.2  

Reusable printer & toner 

cartridges 

0  0  

 reuseable things 2  0.05  

Real garbage real garbage 18.55  1.03  

 hazardous waste 0.1  0  
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Students brainstorm to determine if fast-food restauruants and poverty rates within local 

neighborhoods have any connection. Other discussions involve how fast-food workers 

(especially younger workers) may be completely unprepared in how to respond to a threat 

with a weapon and how this may contribute to the higher homicide rate. (October 29, 

Classroom Observation at Heinz von Foester High School, 2010) 

Teacher structures. Teacher structures consist of two parts: didactical and coping. 

Didactical teacher structures include things such as professional obligations, available resources, 

peer recognition, and challenges faced by the critical mathematics educator. Coping teacher 

structures address how teachers make due during their working life, processes, and people who 

are part of the course of coping, and accompanying responses. 

Didactical. Didactical teacher structures include professional obligations, available 

resources, peer recognition, and challenges the critical mathematics educator faces. Data 

suggested participants draw on various concepts when considering professional obligations. 

During early observations participants tended to think of professional obligations in terms of 

what was expected from regional mathematics educators associations. For example, Owen cited 

the NCTM several times, as a place he turned to for support. He specifically talked about the 

equity principle as influencing how he saw his obligations and his reading of Focus in high 

school mathematics: Reasoning and sense making in teaching statistics and probability 

(National Council of Teachers of Mathematics, 2009). For Gwen and Jack it was more important 

to keep active in such organizations by attending annual conferences or meetings. Because all 

participants were veteran teachers, it is not surprising they appreciated to such opportunities. 

Realizing one’s professional obligations may contribute to a teacher’s long-term success and 

pose difficulty for new teachers. Owen commented, 

New teachers have all these classes and education and degrees. [Yet] everybody says we 

need to support the kids and make it so they can succeed, but what about our new 
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teachers? Why can we not support them to become better? (Owen Harper, June 25
th

, 

2010) 

It appears that teacher educators are not advocating for inexperienced teachers to actively engage 

in obligations beyond the school and to take full advantage of professional associations. 

However, this is even more important for a teacher engaging in CML. Participation through 

organizing obligations is just a starting point and is both a struggle and answer. Teachers are 

pushed—blamed for academically hurting students, and blamed for broad systemic failures; 

teacher unions create obstacles for proper reform (Greenwald, 2011)—when we need to be fluent 

with the tools of the trade but also flexible enough to improvise in particular moments. 

It poses questions of available resources for the critical mathematics educator. 

Professional obligations are established at regional or national levels, whereas resources vary 

from teacher to teacher. Resources address our responsibility to be knowledgeable about 

“curriculum expectations, big ideas addressed by the expectations, lesson goals, prior student 

knowledge, possible student misconceptions, and what future lessons may focus on” (Jack 

Harkness, December 7
th

, 2010). 

Coping. Coping teacher structures come to the forefront during, and after, the teacher’s 

professional day. These structures include the processes and people who are part of the course of 

coping. Data indicate different kinds of coping methods. As we are still in the ontological spaces, 

these are the existing methods CML teachers use to cope and address stressors of the job. In fact, 

kinds of coping only appeared in Owen’s school. In the classroom he had positioned a coffee 

station where anyone could get some of the coffee. It was clear Owen was trying his best to 

encourage student to be mature and make their learning environment less threatening. His class 

followed “the no complaining rule” and tried to find positive ways to deal with negativity. These 
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coping methods require a listening person such as a spouse, peer, co-teacher, or friend. For a 

brief moment, I assumed that role during a school assembly: 

The assembly continues, administrators say grief counselors will be available to all 

faculty, staff, and students. This is because two nights ago, a student committed suicide. 

This past year there have been sixteen student suicides. Owen comments that he has 

stopped going to student funerals. (Owen Harper, July 11
th

, 2010) 

This is the only instance of such dissociation among the study participants. Owen’s 

comments capture both the limits and boundaries of caring put in place by the profession. 

Although it indicates a high level of objectivity, I wonder how students may begin to 

characterize such behavior, if faculty are not at a student’s funeral. It also draws on the need to 

recognize and care for the mental health of student and teacher. Maybe, as educators, we can turn 

the situation around through reviewing why, during the past year, 16 student suicides did not 

meet adequate attention from administrators. 

The Nature of CML Teachers’ Instruction Aligned With a CML Philosophy 

Findings from interviews with participants suggest means by which they align their 

pedagogy with a critical mathematical literacy perspective can be outlined among four kinds of 

value interpretations participants apply when conceptualizing their CML practices. The table 

below highlights the organization of this second part of the results. In terms of this second part, 

the first kind of value interpretation is epistemological. During interviews about teacher beliefs 

on the nature of their own ideology and on CML, discussion of epistemology was categorized 

into utilitarian, purist, and social change. A second kind of value interpretation dealt with the 

teacher’s interpretation of the role of mathematical knowledge. There are two categories here: 

functional and organic. Also reflected in participant interviews is the third kind of value 

interpretation arguing for the participant’s interpretation of the sociomathematical role of the 
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student. This was categorized as active or passive. Finally, the teacher’s value interpretation of 

the culture of CML is organized into four divisions: sociological, ideological, sentimental, and 

technological. 

Table 10 

Outline of the Second Part of the Results Section 

 

What is the nature of CML high school teachers’ instruction 

aligned with a CML philosophy? 

 

Value 

interpretation 
Category Attributes 

Epistemology 

Utilitarian 

Participant focuses on promoting procedural 

fluency or recognized a need to produce efficient 

and productive workers. 

Purist 

Participant’s epistemology is situated in the 

everyday skills and practices students need to 

participate in society further discussing the 

importance of reinventing realistic problems. 

Social change 

Participant’s epistemology focuses on learning 

and activity to empower students with knowledge 

to make connections between critical knowledge 

and possibilities for personal and social 

transformation. 

Role of 

mathematical 

knowledge 

Functional 

The participant states that the role of 

mathematical knowledge is cumulative, 

transmitted based on the needs of society not the 

individual, useful in technical understanding. 

Organic 

The participant comments that his or her beliefs 

on the role of mathematical knowledge is 

actualized by the student’s culture, process-based, 

and should move beyond algorithmic and 

procedural fluency. 

Social 

mathematical 

role of the 

student 

Active 

A perspective that reflects beliefs that the social 

mathematical role of the student is to use 

mathematics in ways that promote public debate, 

scrutiny, and critical questioning. 

Passive 

A perspective that reflects beliefs that the social 

mathematical role of the student is passive in that 

the student should use mathematics in ways that 

support, establish, or reinforce a status quo. 
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Value 

interpretation 

of CML 

Ideological 

Beliefs that the form and content of the culture of 

CML teaching is ideological in nature; that is, it 

is useful as a means to produce students with 

similar values, beliefs, and philosophies. 

Sentimental 

Beliefs that the form and content of the culture of 

CML teaching is sentimental; it is composed of 

feelings concerning people and behavior. 

Sociological 

Beliefs that the form and content of the culture of 

CML teaching is sociological in nature; that is, it 

is composed of customs, institutions, and rules 

and patterns of interpersonal behavior. 

Technological 

Beliefs that the form and content of the culture of 

CML teaching is technological in nature; that is, 

it is concerned with the manufacture and use of 

tools and implements. 

 

Epistemology. An epistemological perspective on the nature of CML instruction 

emerged may be organized as utilitarian, purist, or social change. In general, a utilitarian 

perspective focuses on promoting procedural fluency or recognized a need to produce efficient 

and productive workers; a purist perspective values reinventing realistic problems; and, that of 

social change positions a view of knowledge as relevant in connecting critical knowledge and 

possibilities for social transformation. 

Utilitarian. Mathematics educators, most of the time, focus on teaching skills (exhibited 

as problems A1 and A2 in Appendix E1 and E2, from  a document passed out during a 

professional development Jack attended on December 16, 2010), not teaching citizenship, or how 

to even apply mathematical literacy toward becoming a better citizen. The value position that 

“industry wants [mathematics educators] to create these types of workers” (Interview with Owen 

Harper , June 5
th

, 2010) captures a utilitarian epistemology that focuses on procedural fluency 

and places pedagogical emphasis on the teacher as a vehicle for producing efficient and 

productive workers. This view is teacher centered and, compared to the other two 
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epistemological values, is positioned as the most traditional. It is perhaps the belief(s) that needs 

changing most, to be pragmatic as a CML teacher. This belief holds that mathematical 

knowledge is axiomatic in nature and, in focusing on mathematical efficiency and skills, is not 

overtly concerned with the different ways students are best able to practice mathematics. As 

Owen put it, these beliefs are best interpreted as “believing that mathematics primarily is used to 

set up arguments and proof—that, done correctly, math arguments follow logically” (June 5, 

2010). 

This viewpoint positions classroom norms and discussion from, or as centered on, 

persuasive discourse, similarly discussed on pp. 53–54; persuasive in the sense that instruction is 

for the sake of learning mathematics—not to engage in critique or analysis of sociopolitical 

issues. Clinchy (1996) provided additional commentary that utilitarian epistemology would lead 

teachers to insist students justify every statement, instruct in ways that encourage finding flaws 

in reasoning, and ensure what is presented meets with criteria already established by the 

community. As a criticism of this epistemology, from a CML perspective, the educator focuses 

on educating students to be efficient and productive in the ways they apply mathematical 

literacy. Finally, it is interesting to note that among the participants, utilitarian and passive 

beliefs were least valued. 

Purist. Participants’ comments on epistemology that is situated in the everyday skills and 

practices students need to participate in society and commentary on the importance of 

(re)inventing realistic problems was categorized as purist. This view on epistemology is less 

tradition and more progressive than a utilitarian perspective. It is rooted primarily in a social 

process of mathematical discovery (Lakatos, 1976) in which teacher and student generate and 

critique knowledge through a process of refining mathematical understanding and is similar in 
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nature to problem-based (Polya, 1945) and problem-posing (Lampert, 1990). The purist focuses 

on dialogue as a central process to constructing mathematical knowledge. The importance of 

dialogue in mathematics connects with the means of social negotiation on which students build 

and reshape their understanding of mathematics through social interaction. In fact, Brodie (2000) 

suggested that teachers adhering to a purist view might represent an idealized kind of teacher 

often pictured in discussion of reform curricula. 

Participants commented on purist views, finding mathematics to be something one can 

use every day; that mathematics helps students see that they can solve a problem or social issue, 

and that engaging in that process of mathematical activity solidifies students argumentation 

about what goes on in society, making sense of how somebody is arguing their point. In 

acknowledging that mathematical activity becomes more socially-situated, it is less dependent on 

the needs of corporations, and becomes prioritized to acknowledge mathematical literacy, not 

necessary critical, in that teachers holding purist views engage students in worthy mathematical 

activity such that student “empathy for and sense of affiliation with mathematics together with 

the desire and capacity to learn more about mathematics when the opportunity arises” (P. Cobb, 

2007, p. 9). Participants also discussed a more student-centered means of instruction, in that 

through problems and inquiry, students will see accurately when they are going to use 

mathematics in real life, with classroom discourse about engaging students in real-life situations 

and making instruction and activity meaningful. Jack suggested that provincial ministries of 

education (Ontario Ministry of Education, 2004, 2010; Prince George Board of Education, 2004) 

are applying “philosophical discussion supporting [purist-aligned] curriculum more favorably 

enabling support for teachers engaging students in real life situations” (Jack Harkness, 

November 6, 2010) and making problem-based approaches reflect problems in real life, not 
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merely mathematics problems to be solved. The distinction is subtle but important: in positioning 

problems in real lived experience instead of solely a problem to be solved gradually moves 

toward an egalitarian model of mathematics pedagogy in which students progressively hold more 

input in instruction and deepened responsibility in learning. Such instruction skillfully supports 

dialogue and constructions of shared meaning and knowledge, at the juncture where personal and 

social dimensions cross (Ross, 2004), that emerges from experience. 

Social change. Social change epistemology refers to teacher comments that emphasize 

learning and activity to empower students with knowledge to make connections between critical 

knowledge and possibilities for personal and social transformation. Social-change beliefs enable 

the teacher to include socially relevant topics by shifting their instruction to using the curriculum 

in ways that get students to question what they are learning. That is, guiding students down a 

path that they can will recognize and be positive agents of change, but also to help them 

understand there is a deeper meaning to issues than people normally think. 

This expanding of the curriculum to enabling students to see the deeper meaning through 

engagement, it is also about mathematical critical thinking in seeing socially just issues as 

connecting to that deeper meaning. In seeking to connect with that meaning we ask “What is 

others’ experience leading to such mathematical understanding?” Social justice is an avenue to 

open up students’ minds to think critically while engagement is a short-term benefit: “embracing 

new ideas, looking for what is `right’ even in positions that seem initially wrong” (Clinchy, 

1996, p. 207) gets students to be agents of change by thinking critically about issues. 

The social-change perspective suggests mathematics educators could use mathematics to 

change society, to teach in ways to encourage children in science, mathematics, history, or 
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English by helping them find that passion. The following dialogue highlights this part of the 

social-change epistemology. 

Michael: So, [CML teachers] should be thinking about helping kids become 

more than good citizens? 

Owen: Well, not just—good citizens, but more … 

Michael: Active? 

Owen: More … involved. We really should be thinking about getting kids to be involved 

members of society. That they’re in there and you’re not involved in something unless 

you’re passionate about it, right? But we’re also not helping them find passion when all 

we do is make them do worksheets out of the book every night. 

This touches a challenge that mathematics education has neither properly solved or fully 

dealt with: career switchers and professionals, especially in the sciences, who have been 

recruited to teach in the secondary school. Often these new teachers do believe that teaching 

mathematics is practicing algorithms and making kids to do worksheets to reinforce class 

material. Perhaps, with regard to epistemological views, new practitioners from the business and 

professional world are not adequately prepared to teach mathematics with social-justice themes. 

When beliefs among career switchers are examined, early results from Lee (2011) initially 

suggested individuals are more motivated by current career idleness (“dissatisfaction with the 

previous career”) or feelings of professional uselessness (individuals “had chosen the wrong 

career path”) and not encouraging in terms of a social-change epistemology. 

Teachers’ interpretation of the role of mathematical knowledge 

Functional. Participants’ interpretation of the role of mathematical knowledge as 

functional sees the role as based on the cumulative transmission of mathematical knowledge, 

from teacher to students, and primarily based on the needs of corporations, industry, or society; 

not on the needs of the individual. A functional view also positions the teacher as the basis of the 
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starting point of students’ knowledge, and one which regards the role of mathematics as that of 

proof. Those who view mathematics in this way consider how to formulate an idea, thinking how 

to get from where they are to where they want to be. In this line of thinking, participants often 

spoke of how society expects mathematics education to be valid explicitly for technical 

understanding. Consider how a primary goal of the American Competitiveness Act (2006) was to 

get more engineers, scientists, and biologists into the field of mathematics teaching; a means of 

getting more “highly qualified” individuals into the classroom. However, there were several 

issues, raised by Owen, once such individuals arrived in the classroom. In citing his work with 

two such individuals, Owen commented “when they came to our school, to the classroom, they 

questioned `what do you mean my kids can’t do fractions?` or `what do you mean 12th graders 

don’t understand the meaning of a derivative?`” 

The primary concern was that perhaps such uninformed pedagogical questions may 

eventually contribute to mathematics anxiety. Functional views on mathematical knowledge, in 

relation to secondary mathematics, teaches students that procedural ways of learning “skill after 

skill can be harmful. … [For example] students know how to calculate a percentage but they 

don’t know when to do it” (Jack Harkness, November 6, 2010). The way this may be harmful is, 

for instance, if you ask students to calculate the tax on an item, they can find the price but do not 

understand when to apply the skills learned. This is because the learning out of context. So, 

functional views of mathematical knowledge, as understood in relation to secondary 

mathematics, may best be understood if a teacher were to use a text, sticking solely to what’s 

outlined in the table of contents. From the CML perspective, by going straight to the 

mathematics, this teacher will miss an opportunity to open students’ eyes to issues of injustice 
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and social concern, and to think critically about such issues. If too many teachers do this then 

nothing will ever change. 

Organic. The teacher’s interpretation of the role of mathematical knowledge as organic 

reflects teacher comments that the role of mathematical knowledge is actualized by the student’s 

culture, is process-based, and should move beyond algorithmic and procedural fluency. This 

view contrasts with a functional view, previously discussed, which was more teacher centered 

and based on the needs of society rather than those of the individual. Consider how mathematics 

has been culturally actualized by individuals for several millennia. Egyptians used mathematics 

to guide astronomical and construction issues; the hexadecimal number system of the 

Babylonians is seen today in our used of 360 degrees in a circle and division of an hour in 60 

minutes; the idea of zero escaped mathematics until introduced into modern day Arabic numbers 

during the first millennia (Fenn, 2007). More recently the cultural use of mathematics has been 

further examined by mathematics educators (Bishop, 1988; Gutiérrez, 2002) focusing on the 

practices and process of mathematics. 

People have always tried to understand mathematics. By being culturally actualized by 

individuals, I am referring to the ways mathematical understanding helps people in banking, 

retail, manufacturing, and industry. As an example, in one of Owen’s classes, students were 

using AutoCAD to design a home to be presented to local community members. In discussion of 

building the model, conversation considered what it took to get a scale model. The class worked 

to find all the measurements and began to question why the fractions were so small—they were 

factoring models too small. One student said, “I can’t do this because it won’t be feasible. It 

would be too small to handle with my fingers. I would need tweezers.” The points is that 

students can gain the content knowledge needed out of personal experience. They can bring it to 
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their level and relate it to their lives. This relationship makes it more meaningful to them when 

they are doing mathematics because the students who are working on problems they can relate to 

understand its relevance, see it going on, and then attach the mathematics to it. Thus, it has more 

meaning and engagement because it’s actually about something relevant. 

Finally, in moving beyond procedural fluency, Gwen commented that “It feels pretty 

hollow to just have a bunch of procedures that you’re teaching and then having people do them.” 

It is important to reconcile our knowledge that there are procedural things that are useful in 

mathematics that need to be taught, but it seems a lot more engaging for students to practice 

mathematics in the context of problems, especially when those problems can be about something 

to which they can relate. Organically, pedagogy is shifting linearly following a curriculum, 

chapter after chapter, from teacher-centered instruction to one more student focused, in which 

students can see themselves and their relationship to the problem. The goal is that students will 

see that in mathematics there is something to relate to that they need to know how to do, some 

perspective the student might be able to identify either culturally or socially in some way. In 

letting the student draw out the mathematics, teachers may not recognize the benefits right away, 

perhaps not even in the time they are their student. Jack commented that “it’s something that 

really does take years and years of consistent effort” from teachers to teach in less teacher-

centric ways, working to get students to support their own thinking through mathematics. 

Teachers’ interpretation of the social mathematical role of the student 

Active. Participants who valued the social-mathematical role of the student as active 

frequently described their CML instruction as a means of promoting public debate, scrutiny, and 

critical questioning. Examples of participants’ valuation of the role of the student were indicated 

in data from Owen and Gwen. Jack’s interpretation of the social role of the student is more fluid 
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and will be discussed in the following section (undoing the damage). For Owen, “active” could 

be described as “tearing apart an issue” (Owen Harper, June 6, 2010) and really using 

mathematics to find alternatives or solutions to bolster students’ conceptions of how they can 

support their point of view on an issue. Ideally this involves problem-based instruction, open-

ended dialogue with students questioning what it means, asking what can we do about it, and 

where can we go? In particular, one lesson involved examining data describing reasons 

individuals were pulled over by police. These data were examined thinking about what 

mathematics is most useful and also looking at what is fair or unfair in possible results. The 

important ideas should be student driven. Such ideas addressed drug use on the school campus, 

border-crossing and immigration issues, and picketing KFC with signs showing results of data 

analysis. 

Gwen’s interpretation of the social role of the student was privileged by the structure of 

her school. She was able to work with the same students over a 4-year period. This positioned 

her to help guide students to further develop their skills in public debate and critical questioning. 

For example with her algebra students, in finding and interpreting the slope of a graph, and with 

her calculus students in working with the area under a curve, she questioned “why practice this 

mathematics in an abstract or symbolic way when you could take a problem with real data and 

come up with a solution that had meaning in that context?” (October 14, 2010). 

Overall, interpreting the social role of the student as active is not to reduce mathematical 

concepts to which students are exposed, but rather have them question in ways that might be 

more memorable. So, think of the social role of students as helping children get more enjoyment 

and engagement, especially at more advanced levels, and be comfortable with mathematics that 

enables them to have rich conversations, evolving to say “can we do this more?” 
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Passive. The passive view on the social-mathematical role of the student has the same 

number of counts as utilitarian as highlighted on Table 9. Perhaps it is that the two depend on 

each other directly. A passive view on the social-mathematical role of the student leads to a 

utilitarian view of epistemology, or vice versa. I have referenced this through teacher comments 

that the social-mathematical role of the student should use mathematics in ways that support, 

establish, or reinforce the status quo. Having said that, it is not a surprise that participants did not 

value this kind of social mathematical role for students (as in Jack’s case) or were not the focus 

of such value interpretation; that is when considering the combination with action and in relation 

to the other kinds of value interpretations. However, although participants could still 

acknowledge its value, having such low counts did not entirely allow it to be ta large priority in 

their overall beliefs and values. 

The connection to utilitarian (see Table 9) suggests passive values in the context of the 

classroom may be the beginning stages of development of a teacher’s value interpretation of the 

social-mathematical role of the student, beginning with passive/utilitarian and likely ending at 

active/social change. I conjecture that teachers, who are at a passive stage indicating such 

preferences to related beliefs and values, are indeed at this beginning stage of the development 

and understanding of the social-mathematical role of students.  

Teachers’ value interpretation of critical mathematical literacy culture 

Ideological. The teacher’s value interpretation of CML culture as ideological highlights 

participant comments and thoughts that the form and content of the culture of CML teaching is 

ideological in nature; that is, it is useful as a means to produce students with similar values, 

beliefs, and philosophies. Among the seven kinds of value interpretations, ideological was the 
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densest. This is represented Table 11, which compares category count of the seven kinds of value 

interpretations across the three participants. 

 

Table 11 

Comparison of Category Count of Seven Kinds of Value Interpretations 

  Jack Gwen Owen 

Grounded/ 

totals 

Epistemology 

Utilitarian 1 0 6 7 

Purist 3 2 11 16 

Social Change 6 1 19 26 

Teachers’ interpretations 

of the role of 

mathematical knowledge 

Functional 4 2 4 10 

Organic 6 3 17 26 

Social mathematical role 

of the student 

Active 0 2 17 19 

Passive 0 2 5 7 

Value interpretation of 

culture of CML 

Ideological 3 4 26 33 

Sentimental 2 17 13 32 

Sociological 3 1 15 19 

Technological 2 2 8 12 

 TOTALS: 30 36 141 207 

 

Owen had the largest number of instances of the ideological interpretation, in comparison to the 

other two participants. As an ideological CML teacher, participants interpreted the overall 

culture as encouraging students to develop their own independent views and beliefs. 

Teachers’ interpretation of the CML culture is an ongoing process. It is not much about 

handing a perspective down to students; rather it is being informed as a teacher to have enough 

knowledge and information about both mathematics and current affairs to be able to engage 
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students in both forms of dialogue. Thus, students may see how and in what ways mathematics 

becomes more and more important to everyday life. Owen, the most ideological of the teachers, 

explained, “I get a lot [of ideas] from newspaper, texts, Internet … everything I come across I 

think, `how can I take that to my classroom? Can I make it interesting to kids?`” During one 

interview we discussed a news report about mineral reserves recently found in Afghanistan. 

What would that have to do with children? 

We planned a lesson to start going through it. They’ve found mineral reserves; how 

much? What’s it going to take to get those reserves out of there? Who will benefit? Who in the 

world makes the mining equipment to do that? What are environmental and political positive and 

negative aspects? What is the best way to use mathematics to support one’s arguments? It is not 

about a teacher’s individual persuasions but about helping students to find their own. One has to 

be aware that they’re not reproducing their own viewpoint on policy or political ideas or religion. 

It’s about the students parsing the issues. Once the students comprehend how to use mathematics 

to address one issue, that issue can be used as a springboard to address other issues. 

This view addresses mathematics, current affairs, and also the history of mathematics. 

That historical understanding can give teachers a better idea of how mathematics interacts with 

the world, looking at how mathematics was done in certain time periods: When were these 

concepts? Who proved them and why? Also looking back gives a broader perspective in 

conjunction with world events and history. Looking back, teachers can consider the mathematics 

done today and how it is applicable to current events throughout the world. Teachers also have a 

duty, in moving toward more student-generated social participation, for example when 

presenting something controversial, to present all sides of the issues, enabling students to justify 

for themselves what it is they think, feel, and want to do. 
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Sociological. The teachers’ value interpretation of the culture of CML as sociological 

refers to how participants’ data exhibits patterns in the form and content of the culture of CML 

as sociological in nature; that is, it is composed of customs, institutions, and rules and patterns of 

interpersonal behavior. Mathematics classroom customs and practices are rooted in a practice of 

proving something valid to teachers, students, or others. Teachers’ professional standards suggest 

classroom customs should focus on perseverance, verbal cues, and recognizing and correcting 

mistakes (National Council of Teachers of Mathematics, 1991). Although such customs seem to 

be valid practices, they do not engage students to fully participate in understanding social 

challenges and possible solutions. Teachers must learn to practice patience, practice not 

responding immediately to the first answer, and admit that the teacher is not always the center of 

learning.  

Engaging in classroom customs lets teachers consider what else is valid from a 

sociological perspective in the culture of CML. Teachers perform as a guide, helping students to 

work through the mathematics and see that it can be a tool for citizenship, for an engineer, and 

for changing society. Teachers need to allow student culture to become a part of the classroom. 

The topics in a CML classroom can be controversial, but teachers should be working to allow 

students to speak to each other, not trying to speak over each other. These rules and patterns for 

classroom discourse should allow all students to see education as an introduction to the 

complexities of life, the world, what we know, and where we fit over time. Mathematics may be 

a quest to solve problems, supporting the individual needs of students in the context of the 

problem, and working to understand the rules and patterns that apply to everyone. The study of 

mathematics should prepare students to think about their choices, working to change things for 
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the better, and can add to the social skills students need to interact effectively with other 

members of society. 

Sentimental. Teachers’ value interpretation of CML culture as sentimental refers to 

comments that the form and content of the culture of CML teaching is sentimental; that is, it is 

composed of feelings concerning people and behavior. Referring back to Table 9, the sentimental 

valuation of CML was the second most grounded category across all three participants. Values as 

sentimental do not mean having emotional or nostalgic beliefs, but instead address a deep 

awareness and caring for one’s students. Consider Jack’s comments (December 2, 2010): 

Last year I have a student who grew up in poverty in Ecuador and she hated math and her 

mom hated math and transferred that right to her. When she came to my classroom, at the 

end of the school year, she did a presentation on poverty, had several graphs and statistics 

[about world poverty], understood what they meant and shared that with the class in a 

very heartfelt way and felt good about math perhaps for the first time in her life. I can’t 

tell you how good that made me feel. 

Here Jack commented on the personal value the student and the teacher gained by the 

student’s presentation on poverty, a topic the student had experienced. The teacher provided the 

opportunity for the student to explore the topic, providing a change in the mindset of the student. 

A teacher who values CML culture as sentimental, the assessment of a presentation cognitively 

shifts students’ perspective to becoming familiar with new forms of interpersonal behavior and 

learning mathematics by focusing project/problem-based learning rather than focusing on 

examinations. 

This cognitive shift has been described by Lesh and Doerr (2003) as moving from 

“applied problem solving treated as a special case of traditional problem solving” to a more 

modern understanding in which “problem solving is treated as a special case of model-eliciting 

activities” (p. 4). This subtle distinction was made in the section discussing purist views on 
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epistemology about making problems reflect realistic, everyday challenges and not simply 

mathematical problems to be solved for the sake of completion. This cognitive shift can be 

extended to introduce students to conceptual tools that include convincing ideas that reveal 

important characteristics about how they are understanding the problem-solving environments. 

This process of mathematical self-convincing generated to better understand a problem-

solving environment frames the learner as the subject (“I am working with tools, ideas, and 

characteristics to relate to the problem”) and positions tools, ideas, and characteristics as the 

object for the student’s knowing. As Gwen put it, 

it takes very deep dedication and professionalism. I’m hired to teach mathematics but all 

my kids aren’t going to come to me looking, sounding the same. I’ve got to figure out 

how to teach best with each one of them. 

This interpersonal professional dedication is also an attribute that sets a sentimental 

valuation apart from the other three. We want our students to have knowledge of mathematics 

and good feelings about it as well. Continuing in her dedication to her students, Gwen 

commented “I want them to feel like it’s not awful; it’s not scary; it’s not abstract. It’s something 

that they can do, it can be learned with a caring teacher and it’s useful.” (October 14, 2010). 

Along with dedication there is also enthusiasm—for the mathematics and for the students. If 

relationships with students are good, then students are going to learn more easily and the teacher 

will feel good about maintaining positive relationships and a positive learning environment. 

Beliefs as sentimental is about wanting students to feel successful; that they can continue in their 

mathematics learning at a college level, doing abstract work. Part of students being successful is 

that they can picture something that is not going to be purely abstract for them. Finally, 

sentimental beliefs hold that “the teacher is just trying to make it so that it’s a little easier for 
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students to understand as we go through problems” (Owen Harper, Follow-up interview, August 

9, 2010). 

Technological. Technological values refer to participant comments that the form and 

content of the culture of CML teaching is technological in nature; that is, it is concerned with the 

manufacture of tools and implements. Owen commented that his technological valuation started 

with the idea of what was being taught to students. “Does anybody realize how much 

mathematics we really need just for even a job as mechanic? Usually we think mechanic—turn 

the wrenches and the job’s done. This is not so true any more” (June 8, 2010). As we position 

this comment in modern society and think about the equipment and interactions that mechanics 

have with machinery and tools, it has become incredibly advanced; moving into the vocation 

fields often involves mathematical literacy in a received form of knowledge. 

Briefly this demonstrates how the technological valuation of CML culture is concerned 

with the use of tools and implements. Classroom instruction considers tools that are important to 

organizing and structuring mathematical learning. For instance, a commonality with Owen and 

Gwen was the organization and maintenance of student mathematics notebooks for Owen, and 

mathematical composition books for Gwen, as a means for students to record and arrange class 

notes, homework, and related materials. This use of notebooks or composition books can 

establish uniformity in the pedagogy. This creates the expectation that the student will always be 

in possession of their work; students do not need to ask for or look for, paper. In Gwen’s case, 

the entire school had adopted the idea so a teacher may ask where the student’s composition 

book is; as if they were to bring a textbook to class. Finally, students studying science and 

collecting data, need some mathematical tools or mathematical knowledge to analyze that data, 
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to ensure the experiment will make sense. If they don’t know what to do with any of the numbers 

they collect, then their knowledge is insufficient to analyze the data. 

On the foundations of a mathematics teacher’s technological beliefs, Williams (2001) 

suggested the foundation is rooted in capitalist values in which business and corporate interests 

are extended through social influence, particularly on teachers, to prepare children for 

professional participation in industrial society. Although it is important for teachers to prepare 

students for vocational positions, if that is the sole focus it narrows the mathematics curriculum 

through valuing mathematics as an unquestioning body of knowledge, lacking critical emphasis 

and thinking, and positions students’ mathematical learning outcomes to be based on social 

training in obedience and seeing mathematics as realistic only for industry-centered knowledge 

appropriate for vocational certification. 

Discourse and practice in the CML classroom 

So far results have illustrated the means through which students are challenged by 

existing modes of maintaining culture and the ways self-image is revised. This is the 

conventionalization stage of the model of the construction of mathematical knowledge—as 

highlighted in Figure 1. Through the ways in which culture is transmitted in the CML classroom, 

the students’ personal meaning—personal understanding of mathematical knowledge—is 

mediated and revised to reflect a self-image built through image-building ethical pedagogical 

tools. This self-image is garnered through mathematical practice and discourse generated through 

agreement with and meaning making with peers. 

Reference to the Bardo state relates to the appropriation stage of the model of the 

construction of mathematical knowledge. At this stage, the ownership of the knowledge 

transitions from public to private still within the social realm. As the Bardo is a space individuals 
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pass through, shaped by culture (cultural Bardo) and social (social Bardo) factors. The Cultural 

Bardo affects appropriation by influencing the student’s beliefs, fears, and emotions about the 

ways in which new mathematical knowledge is internalized. For example, if the student has 

previously learned from their parents that mathematics has no value then the student will be less 

interested. The role of the Social Bardo is to contribute to the individual’s personal 

understanding of mathematical knowledge as the social location changes from the social (the 

meaning developed in conjunction with peers) to private (how meaning personally makes sense 

to the student). That is to say while the Cultural Bardo is where individuals internalize meaning, 

the Social Bardo is how personal meaning is brought about by what occurs physically. 

The ontological space of the Cultural and Social Bardos represents points at which the 

student solidifies a perspective on mathematics. The Cultural Bardo represents a student’s 

movement within various classes of cultural censure of mathematics. Participants spoke of 

seeing their students (self-)censure depend largely on parents—as with Owen’s comments—and 

also as a place to encourage and counter such censure through helping students re-connect with 

mathematics in ways that help them see mathematics in everyday realistic terms. Gwen spoke of 

the Cultural Bardo as a belief in one’s self that when society acknowledges and encourages 

disapproval of mathematical competence, the teacher must step in to show students “under the 

surface anybody who can’t do math actually isn’t totally self-assured that they’re smart” (Gwen 

Cooper, October, 14, 2010). 

The social Bardo occupies the ways teachers and students comprehend resistance to 

society through either resistance-by-choice or resistance-not-by-choice. Resistance-by-choice 

was viewed as becoming the first person in a family to graduate from high school. Resistance-

not-by-choice was addressed in several data points in the data as poverty, displaced institutions 
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(e.g., prison, “The Rez”), and homelessness. It is a function of the Bardo to acknowledge that 

which is often unspoken, especially in the context of the secondary mathematics classroom. 

Through understanding the cultural and social Bardo, educators may begin showing students that 

equanimity is possible; that in being the first generation to graduate, that valuing mathematics for 

its role in helping to analyze, understand, and offer solutions to challenges facing society, then 

the Bardo does become an intermediate state whose outcome of liberation, of transformation, 

arises by passing through this immediate state, turning its negativity to virtue. 

Learned negativity. Participants suggested their students’ views of mathematics as a 

subject developed chronologically, with mathematical anxiety, phobia, and fear perceived by 

students at early ages. On the subject of mathematical anxiety, Ramirez and Dockweiler (1987) 

found it has a negative effect on mathematical performance (e.g., under high-pressure 

assessment) and on future decisions, such as dismissing mathematical vocations. Further 

discussion with participants drew on the relationship between the student and their parents. That 

is, if parents were not positively encouraging their child’s learning of mathematics, the child 

would learn it is acceptable not to be mathematically literate. 

It is difficult for students with mathematical anxiety to help students experience and 

understand their relationship to that anxiety. For the CML teacher, however, it should become an 

opportunity to help students transform; to recognize their own negative beliefs and reposition 

them in a safe learning environment. All participants spoke of their own caring for students and 

instruction as attempts at “undoing the damage” of previous inept mathematics teachers—those 

with whom students learned to associate negative beliefs with mathematics. The consequences 

are clear if educators do not address our students’ mathematical anxiety. As these students 

mature and enter society, they often feel ashamed because of prior negative experiences in 
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mathematics and exhibit self-censorship, self-doubt, and vulnerability in doing mathematics 

(Bibby, 2002) along with self-distrust in their own mathematical knowledge (Coben & 

Thumpston, 1995). 

Addressing the discourse of event. The discourse of event organizes classroom 

discourse in the Critical Mathematical Literacy Narrative as expressive and persuasive discourse. 

Consider the sample of expressive discourse, where the group members’ act of struggling to 

mathematically summarize their data in their binders and the student comments that this part is 

too difficult. Expressive discourse helps solidify ideas through writing and seeing the connection 

between violent local neighborhood-crime data as a realistic setting for mathematics. With 

persuasive discourse, understanding arose from students trying to persuade the class that their 

model equation was the best representation. Although there was some discussion among 

students, the teacher had the final say both in which was the best model equation and in 

persuading students that this kind of mathematical understanding would enable them to become 

the next generation of scientists. 

Discourse of event. Discourse of event provides the space to develop CML in two ways: 

expressive and persuasive. Opportunities to provide expressive discourse, as outlined in the 

results section, ideally helps students make personal sense—engage in a personal critique—

whether in a mathematics/activity journal or in interpersonal communication with peers and 

group members. This draws on the teacher–student boundary and yields more space to the 

student. Their expressions in vocal or written statements personalize and further mathematical 

understanding from seeing and interpreting a context in ways with which they are familiar; that 

is, through sketching diagraphs or graphs to solve problems, as seen in Figure 13. Sowa (2000) 

suggested that through expressive discourse ontological relations among mathematical concepts 
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the students is working to understand become further solidified through the statements (personal 

or interpersonal) students make. In terms of what this means for the CML teacher, it suggests 

instruction should prepare and yield opportunities for students to be comfortable with expressing, 

in their own language, what the language of mathematics forms through symbols and terms, 

vocabulary, and variables used. 

Persuasive discourse contributes to the discourse of event as opportunities to engage in 

processes of argumentation and critical mathematical thinking. When situated in the Critical 

Mathematical Literacy Narrative, persuasive discourse can position students to evaluate a 

problem through ontological means in determining a solution or even whether a solution exists. 

Persuasive discourse is a moment in instruction when a distinction is called upon between 

procedural and conceptual knowledge. Examples from data highlighted in Gwen’s class focused 

on trying to convince oneself, via modeling data on the TI calculator, of which exponential 

function best represented the given data.  

Across all data there were 26 instances of persuasive discourse where such discourse was 

used to convince someone of a solution to a problem. Critical mathematical thinking occurs 

when acknowledging that using both procedural and conceptual mathematical knowledge 

contribute to a problem’s solution. One can see, for example, in modeling an equation, that its 

graphical representation does approximately fit the given data; however, students need to look 

back on prior mathematical experience to be able to piece together their own questions and see 

what is missing; that is, to look for deeper meaning themselves rather than depending on the 

teacher for guided meaning. For CML teachers, this means being aware that lessons can be 

heavily contextualized in a specific problem—valuing proficiency and not permitting students to 

take their understanding to a more abstract, concept-based level and translate contextualized 
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understanding to a more general, broader case. So, for example, in a lesson on measurement, 

students may be able to measure various walls and plot that data but may have difficulty 

applying that to measuring something very large, like a skyscraper, or very small, like a human 

cell. We need to take that understanding they have of mathematics in a specific problem and be 

able to generalize it or resolve a possible solution in a second, different case, while also being 

able to compare what, why, and how understanding is different by creating the concepts we are 

seeking. 

The Teacher  

Attributes of “the teacher.” There were several attributes encountered in the data of a 

CML teacher. The first attribute of an effective teacher is one who provides several opportunities 

for contemplative self-analysis both teacher created and student–teacher created. One way in 

which participants promoted contemplative self-analysis in a teacher-created means was by 

critical review of a student’s performance on an assessment. For example, in reviewing an 

assessment with her students, Gwen had students question their mistakes with considerations 

such as “Was this a small mistake?” To correct that misunderstanding the student could further 

detail “I know it well but goofed,” or “I need to work on this and will seek tutoring.” Student–

teacher-created contemplative self-analysis largely took the shape of discussion around creating 

rubrics and understanding what expectations were, mathematical and otherwise, for a project. 

Owen discussed one such rubric where “written on the whiteboard were two columns. One was 

showing the mathematics and the other was writing out the steps they went through. … [These] 

were done by us here in class” (June 25, 2010). Jack also used similar student–teacher generated 

rubrics. 
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Another attribute encountered in the data concerns the idea of discouraging rapid reward. 

By this, I am referring to promoting student thinking that goes beyond the right answer. Perhaps 

to some degree this requires a shift in our students’ cognitive perspective. Consider what is lost 

when the mathematics teacher positively responds to that student who answers our questions 

first. The need for additional understanding, for more thinking stops there. Our options are to 

restate question–answer and perhaps offer another effortless question and continue the lesson. 

Across several instances, participants discouraged this “right answer” kind of thinking. Primarily 

this was accomplished by the participant when students sought approval on a ventured answer. 

As a means of instruction, this is a very student-focused way to teach such that teachers no 

longer promote fill-in-the-blank responses to a text but instead say to students “OK. You’ve 

come up with a solution. What are some of implications? How can you show me it makes sense 

mathematically?” Thus, CML teachers need to learn not to immediately respond to the student 

closest to us (should we be at the front of the room); that is not to say we cannot reward the 

initial response, but we need to encourage peer dialogue, debate, and critique. We need to focus 

on these students who “look like they may answer, and often do, any question; that look like they 

are thinking” (Jack Harkness, November 17, 2010) but are really just waiting for the right answer 

and want to move on. 

Teacher voice refers to an attribute of the teacher that moderates a teacher’s internal 

voice. For example, Gwen referred to “constantly being aware of the fear [of mathematics] level” 

(Gwen Cooper, October 7, 2010). Consider as this fear rises, learning goes down. In the most 

advanced class of each participant, field observations highlighted how participants wanted to 

instill in their students the ideas that they, even the most fearful student, were good at 

mathematical pursuits; that they can trust the teacher about the simplicity of it; and that when 
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they are working with mathematics, now in the class, later with another teacher or parent, or in 

the future perhaps at work or in college, they can calm themselves by remembering the big ideas. 

Teacher voice is also this calmness, soothing students; placed there by the teacher by developing 

personal relationships and trust with students so they may keep learning. When schoolwork gets 

difficult and they become scared or disoriented or disbelieving, previous experience with a 

caring mathematics teacher will reassure them that they can reach achieve understanding. In 

interviews about the teacher voice, Jack referred to it as the internal coach asking “What went 

well? What changes can be made? What are my next steps?” In this sense, teacher voice is an 

internal coach teachers pass on to students and equally mature teachers’ own sense of what it is 

like to develop that teacher’s voice. 

Pragmatic educator. The image of the CML teacher as educator is the last attribute of 

the teacher I will discuss. A pragmatic view will see the importance and possibility for social 

change, that students’ everyday lived experiences have meaning and can provide meaning-

making contexts. The pragmatic mathematics educator understands that applied and realistic 

problems stem from these everyday life and work environments. By acknowledging the 

contemporary, we are also acknowledging the historical, activism and counterculture, factual, 

and popular culture. These environments were explored in the discussion of a Critical 

Mathematical Literacy Narrative’s Context. This pragmatism has several roots across curricular 

theory and more specifically in the view of the practice of mathematics. 

The pragmatic educator has ideological roots in the philosophy of science education 

(Popper, 1959), which suggests the scientific method is an invaluable tool in the creation of new 

content knowledge. In the arena of mathematics education, such empiricist views on new content 

knowledge deal with recognizing that whenever we claim to mathematically know something it 
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becomes revisable, once we learn a specialized way to represent that knowledge. For example, 

consider the beginning algebra student who has been told by teachers that all linear equations can 

only be written as y = mx + b. When one day our beginning algebra student learns from a peer 

that linear equations can also be written as ax + by = c, the beginning algebra student is still 

justified in the original belief and now has support for a new representation of that knowledge. 

As we get into more advanced mathematical knowledge the pragmatic teacher works with 

students to revise their knowledge and consider how the truthfulness of something is established 

by convincing others that a concept is mathematically valid. Participants describe their adherence 

to this attribute of the teacher as opening up student learning to the value of discussion and peer 

critique by accepting that students and teachers are sources of knowledge and that doing 

mathematics becomes more than filling-in-the-blanks and incorporates expressive and persuasive 

discourse to convince self and other about mathematical truthfulness. 

Discussion 

This section will address means by which the research presented in this study is relevant 

to both ontological and ideological perspectives on the practice of teaching CML (ontological) 

and toward its culture. Recall, as discussed in the first section of the Results, that characteristic 

spaces emerged in which teachers and students developed relations, engaged in sociopolitical 

and cultural inquiry, and placed meaning of being in a cycle of analysis and critique arrived at 

through mathematical literacy. The second part of the discussion will consider how results 

presented as an ideology for mathematics education can further shape secondary mathematics 

instruction compatible with teacher values and beliefs conceived as foundational to critical 

mathematical literacy. Finally, the discussion will close with directions for continued inquiry and 

practice. 
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Understanding CML Teaching in Ontological Spaces 

The results presented in the first ontological space, ways to transmit culture, highlight 

classroom and school practices in which students begin to believe and participate in; beliefs and 

participation further rewarded and recognized by administration and teachers. Continuing this 

tradition of maintaining and valuing dominant culture, over one in which plurality and promotion 

of individual and social respect is encouraged, needs to be reduced and reconsidered. The 

mathematics classroom can begin to chip away at the maintenance and transmission of dominant 

culture; yet, for this to happen takes a very dedicated and compassionate educator. It takes 

continued development of the teacher’s practice to, as Barta and Brenner (2009) point out, 

highlight, contrast, and purposefully expand our limited and biased views of didactics of 

mathematics education to one in which it is both a tool for inquiry and a model for engaged 

democratic and political dialogue. 

In the classroom we need to move away from irrelevant food math to a discipline that 

encourages broad questioning of how, what, and why society and mathematics connect. The six 

domains of critical mathematical literacy are but one means to effect social change with students 

and classroom. Incorporating mathematics problems (for example, as exhibited in Figures 7 – 11 

and in Table 6 and 7) change what it means to use mathematics and position its knowledge as 

something more than what students learn in school or passively reposition from classroom 

setting to occupational setting. 

Transitioning from illiteracy to literacy through the Bardo.  In further considering the 

ontology of spaces of existence, the results considered the social and cultural space specific to 

progression from CML illiteracy to a developed literacy. That is, the space of the Bardo encases 

an individual’s journey. From the ontological sense, the individual’s being or notion of what it 
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means to be literate from a CML perspective transitions and evolves as the mathematics teacher 

orchestrates the students' travel from (mathematical) death to (mathematical) rebirth. The 

moment of (mathematical) "death" of the student is the beginning of the Bardo journey.  

This application to the classroom highlights the Cultural and Social Bardo realms. The 

Cultural Bardo was exhibited through participants helping students to reconnect with 

mathematics through positive and personal means. Within our classrooms this means educators 

have influence, voice, responsibilities toward socializing students to solve problems and work 

collaboratively. Consider this as a way to guide your classroom discussion toward having 

students develop confident answers. That is, not one of right or wrong but that focuses on the 

process of arriving at a confident answer; a solution that could be right or wrong but intrinsically 

grounded in he students own conceptual/contextual understanding.     

The transition through the Bardo toward a more critically mathematical literate 

individual, in the Cultural Bardo realm, exhibits reconnecting with mathematics from more direct 

and personal means. In the mathematics classroom, the Social Bardo layers a political, and 

sometimes controversial, influence of the mathematics classroom as structuring, or creating 

awareness among classrooms and society, in engaging about what is means to encompass a 

socially just problem through math understanding. This relationship exhibited in mathematics 

instruction is an entry point for crossing borders between generating mathematical understanding 

and positive social action that may be created or acknowledged. 

Strategies for addressing this varied among participants. Owen included themes such as 

poverty (on local Native American Reservations and in developing nations) and discussion of 

“what it means to be the first generation in your family to make it past 8
th

 grade” as entry points 

for localizing data, creating opportunities for his students to complete writing prompts and 
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design graphs and posters about poverty, and for overcoming socioeconomic and cultural 

barriers in moving out of poverty, homelessness, a Reservation, prison, and turning negative 

social norms surrounding these into positive means for understanding society’s reactions and, 

more appropriately, his own students’ heritage and indigenous traditions. Gwen used topics such 

as homelessness and homeless shelters, refugee camps, and consequences of inadequate health 

care as means for developing her students’ positive engagement with math and relevant political 

events. Jack promoted the general literacy development of all of his department teachers by 

highlighting, during a professional development session, how varied sociopolitical topics are 

supported as means for mathematical literacy by standards of practice used by his Ministry of 

Education and that by math teachers not implementing such topics as entry points into further 

developing students mathematical literacy, teachers were effectively not meeting the needs of all 

their students.  

CML Narratives. As an ontological space Narratives can be discussed as a more direct 

experience between teacher-student and what is generally regarded as a secondary mathematics 

curriculum. One of the challenges of teaching for critically literate mathematics understanding is 

that we are not always supported in our endeavors by curricula. In outlining such concerns, 

Narratives, develop the sociopolitical through Contexts, Actions, and Results of Actions. With 

regard to Narrative contexts, examples collected from participants tended to be situated in data 

that supports visual (as in Figures 6, 7, 10, and 12) or numeric (as in figure 11 and Tables 3-5) 

comparison. While there were also other contexts highlighted, this suggests participants found 

examples from their existing curricula lacking n that participants needed to develop their own 

meaningful contexts. I would suggest that future curricula should be expanded to build on these 

but should also consider locating meaning in additional areas not solely in that of a data set. 
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The participants use of Narrative actions formed much of  students understanding as not 

simply right or wrong but as involving possible solutions negotiated among the class and 

between students. Recently in the Occupy Wall Street (Occupy Wall Street, 2011) discussion, 

citizens brought to the forefront of national discourse issues of income disparity; similarly, Gwen 

examined, more specifically and from a mathematical nature, how a corporation’s CEO pay 

compared to the rest of the company’s employees. Strategies that Owen used included 

familiarizing students with locally available crime data and probing results in light of social 

concern. Jack’s instruction proposed to engage students in mathematical deconstructing media 

images and messages to examine underlying biases. Through various strategies, participants’ 

students used argumentation to answer decidability and believability questions. Generally in the 

math classroom, we do not engage students in disassembling and mathematically understanding 

cultural or media messages and such concern, since it was not addressed by participants regular 

school mathematics, was addressed through locally developed materials supported either by data 

or discussion how relationships expressed mathematically through Narratives encouraged civic 

action. 

Finally, how that civic action was shaped took on two forms: inductive and proletarian. 

Strategies organized by participants as inductive results of action highlighted traditional school 

mathematics knowledge such as recognizing and describing patterns and functions while 

participant pedagogy through proletarian results allowed for a more student-centered and socially 

oriented meaning. The importance to CML is that both contain the mathematics important for 

framing action and taking action. Through addressing each, at appropriate times, the CML 

educator values and models how mathematics can be expressed in relevant social engagement.  
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Bridging ontological spaces and CML cultural values. As a bridge between the 

ontological spaces of existence and participants’ CML cultural values, teacher structures deal 

with the professionalization of teaching. The first structure, didactical structures, supported 

participants relations with other professionals who could understand demands from parents and 

school administrators, engage in professional development and dialogue, and address big ideas of 

the profession. Coping structures require us to deal with the physical and psychic demands of 

teaching: I am a parent, big sister/brother, counselor, public safety officer, community activist, 

and negotiator. All at the same time. Every day. Teacher structures help us work cooperatively, 

within our schools and within the profession, to transition beyond deploring our students to 

earnestly assessing our resources and capacities to best meet education goals. In the field, these 

structures are known by names such as professional learning communities or school-based 

learning teams.  

As a bridge across spaces of existence and relevant knowledge, structures reflect our 

interaction with other educators while CML cultural values connect to what is valued and how 

we participate in classroom practices. The categorization of epistemological views into 

utilitarian, purist, and social change suggests participants needed to hold differing values at 

various times. Social and political pressures call for a utilitarian view while participating in 

resistance and change need a more activist, social change view. The contrasting views expressed 

in relation to the role of mathematical knowledge highlight existing challenges in preparing and 

retaining teachers. For example, as Owen commented how when he worked with two student 

teachers, they questioned why students were unable to work with fractions and had difficulty 

with derivatives. These comments exhibit the unrealistic view of new educators and also how 

unprepared they may be in meeting the needs of all students.  
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Limitations 

Lastly, I would like to briefly address limitations of this research. While collecting data, 

one of the limitations experienced at Maria Montessori High School was the challenge imposed 

by the structure of the school’s schedule. That is, students are on alternating week schedules, 

each week has different students and the content from the previous week gets retaught or 

repeated. This means that observations were of the same lesson but with a different group of 

students. The effect this had on observations was that I found myself writing similar observation 

notes but with different students.   

Another limitation is that the nature of participants’ instruction, when using sociopolitical 

topics, has potential to be devoid of mathematics. That is, in some instances it felt more like a 

political science, history, or social studies class. For example, discussion could get quite 

involved during issues related to social, economic, cultural, or political challenges in seeking a 

solution from mathematical means. I would suggest however that such discussion is necessary to 

set the context—reasoning about why there are a large number of sociopolitical narratives 

available piques student engagement to broader issues and contexts outside their classroom and 

immediate lives. In fact, there were points with all participants where it was hard to comment on 

the divorce of mathematics from class discussion. I believe this is because participants must 

accept multiple roles in being able to more actively discuss issues and focus on the mathematics 

later. That is to say, while a participant planned to address mathematics through an appropriate 

critical mathematics issue, discussion of the nature and scope of the issue might have potential to 

background the mathematics in a particular lesson.   
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Limitations relating to constructivism. In suggesting a conceptual framework rooted in 

the social constructivist view, there has been focused attention to the process of arriving at 

mathematical knowledge. This assumes both that learning and teaching are also parts of this 

knowledge. On the first assumption, that of learning as part of the process of constructing 

mathematical knowledge, needs to be addressed by offering details as to what an ontology for 

learners in such a view of mathematical knowledge. I have attempted to outline and justify one 

such ontology as the first and second spaces of existence. However, that does not dismiss other 

ontologies or even suggest what is outlined in this research are necessary to a critical 

mathematical literacy understanding. That is to say, should we adopt a different epistemological 

claim—say, that of a preexisting body of mathematical knowledge, as in the absolutist view—

then supporting ontological approaches may be entirely different. 

 On the second assumption, that of teaching as part of the process of constructing 

mathematical knowledge, it is important to acknowledge that because this process is located in 

the social interaction between public and private realms, teaching changes and revises students 

assumptions as meaning forms in different realms. This meant that participants placed 

considerable value on the role of classroom discourse in establishing meaning. That is, 

supporting students with the materials and resources to challenge and critique in establishing 

meaning of being critically mathematically literate. This is seen in participants’ largely aligning 

to a social change epistemology (see Table 9) in their reflections on the culture of participating in 

critical mathematical literacy. A similar study with different participants might not find such 

values or that participants might have different considerations for epistemological foundations 

for mathematical knowledge. 
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 Finally, as with most ethnographic work, is the issue of time spent in the field. Since I 

was only at each school for a maximum of eight weeks, it was important to build participants’, 

and that of their students’, emotional valence (Paterson, 1994) by exhibiting that the relationship 

between the researcher and participant was equal in the classroom. While it was important for 

students to see that I was similar to their teacher in terms of status, knowledge, professional role 

within the school, etc., it was more important for the participant to feel similar status of trust in 

the research relationship. For each participant, overcoming emotional valence was a different 

process. With Owen and Gwen, it required participating in more before- and after-school 

activities such as staff meetings and conferences, in-services and district events. This was also 

the case with Jack, however since Jack was the department chair, it was also important for his 

colleagues only to see my role as classroom observer and not that of a potential new teacher; that 

is, since teaching positions at Jack’s school were highly sought after, it was imperative that I 

would not be seen as a candidate for such position. This did not necessarily affect observations 

or data from the school but is important in acknowledging so that results and methods were 

consistent across all three participants. 

Implications for continued research 

 Discussion and analysis of results suggest the means by which CML educators connect 

the permanent social world to students’ temporary time in the classroom is a complex mix of 

ontological spaces that share a connected consciousness of the process of generating 

mathematical knowledge. Questions still remain as to the continued pursuit of individual 

trajectories within the described four spaces of existence. Likewise, considerations for fully 

integrating these into existing and future practices of professional development need to be 

identified and described. 



www.manaraa.com

104 

Recall that the first ontological space involves the ways in which culture is transmitted. 

Three means were identified as practices in maintaining, revising, and mediating culture. This 

semantic relationship highlights ways critical mathematical educators make explicit traditions 

that maintain inequities and position their students to resist. As Gwen states: “…having some 

knowledge of [math] is used to keep people from being more educated.” While this perspective 

was not fully elaborated upon, I would suggest that future research should continue to identify 

and describe means, resources, and instruction that permits students to resist mainstream culture 

and dominant mathematics.  

In participating in a program of critical mathematical literacy, participants discussed the 

need to revise conceptions of mathematical knowledge as something to be handed down from 

teacher to students and to work with students to bridge individual meaning with public 

knowledge; administrators and parents need to support classroom teachers who have courage to 

step outside functional, utilitarian perspectives and encourage, active, transformative learning. 

Implications for classroom practice 

 In thinking largely of implications for classroom practice, I would suggest that, as 

mathematics educators, we need to deeply reconsider the importance of our beliefs and 

continuing support of utilitarian and functional epistemological views in addition to how to more 

solidly prepare current and pre-service mathematics teachers with the professionalism needed to 

address the sociopolitical challenges of critical mathematical literacy teaching. Existing beliefs 

supporting a utilitarian view inform classroom practices that are not encompassing of the social 

and transformative nature of critical mathematical literacy and seemingly contra to positioning 

students to become active citizens and teachers as vehicles of change. An informed professional 

development, or pre-service didactics course, would address these themes.  
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 Further, the professionalization of mathematics teaching as a tool for solely meeting 

needs of corporate and economic interests—that is, regarded primarily as a means for producing 

scientists and engineers—also does not honor the CML teacher’s positionality to extend 

mathematical understanding to contemporary historical, cultural, or political problems that exist 

in society. Addressing the sociopolitical in the mathematics classroom extends traditional 

practice to increase mathematical discourse through involving contemporary civic concerns 

beyond the classroom (Skovsmose & Borba, 2004) in supporting dialogue and mathematical 

meaning that shift away from a utilitarian epistemology to one of social change; such as that 

exhibited in Appendices E-1 and E-2. In this way, if CML is to have stable outcomes and well-

defined learning experiences, teachers need to consistently connect the sociopolitical with 

reflection on students’ understanding with opportunities for transformative social change. 

Conclusion 

In the examination of how CML teachers conceptualize their practices and how those 

practices were demonstrated in the classroom, it is understandable that conceptualization 

involves considerations for an ontology of mathematics education that differs from what is 

historically accepted, that is, beginning with the Greeks, by positing a realm of ideals and being 

as existing independent of humanity; one where the process of doing mathematics is to gain 

access to this static Platonic realm. Here, the truth of mathematics is not in challenging or 

reexamining concepts and proofs, but in the beliefs in the axiomaticity of the conditions of 

numbers, functions, propositions, groups, and points (Priest, 1973). 

In more recent times, mathematics education has transitioned across an unusual landscape 

of distortion of ontologically what is meant by mathematics, and more importantly, school 

mathematics, to our current historical crisis in which we increasingly “instrumentalize, 
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professionalize, vocationalize, [and] corporatize” (Thomson, 2001, p. 244) expectations for 

education. The findings from this study suggest adopting a critical mathematical literacy 

perspective acknowledges that absolutist views are no longer the most ideal view; that teacher 

and student interaction, the questioning of what it means to do mathematics as an individual, as a 

citizen, as a community member, that the importance of indigenous and other subjugated 

ontologies (Semali & Kincheloe, 1999) replaces acceptance of solely one acceptable truth. 

 School mathematics is no longer valued for its absoluteness but is seen as fallible and 

malleable to human thought and action. Its role becomes one of enabling the practitioner to move 

through consumerist uses to more transformative ones. The school classroom, as a container for 

student and teacher discourse, encourages a literacy that is socially and politically aware and 

engaging. And, the position of the mathematics teacher is not to transmit knowledge or even to 

function as moderator between mathematical knowledge and application. Instead  
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Abstract 

This chapter orients the reader to mathematical literacy and then examines the sociopolitical, 

instructional, and mathematical knowledge conditions that help shape a CML perspective. 

Sociopolitical conditions highlight the need to reframe mathematics education for transformative 

individual and social change. Instructional conditions include the need to properly train 

mathematics teachers, and mathematical knowledge conditions highlight the need for revaluing 

content knowledge. The discussion reveals six domains for CML: (a) reflective capacities, 

(b) mathematical comme il faut, (c) mathematical fluidity, (d) mathematical prudence, 

(e) mathematical confidence, and (f) mathematical doubt. 
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Introduction 

I would like to open by considering an issue with contemporary mathematics-teacher 

education. Consider that our work with pre- and in-service teachers, particularly what occurs in 

secondary mathematics and pedagogy methods classes, focuses on the authoritarian transmission, 

from teacher to student, of mathematical knowledge. More rarely are there mathematics 

educators who, through our work with education students and practicing teachers, promote 

mathematical instruction as opportunities to engage our high school students to actively 

participate in society with a mathematical sense of how personal and social change are possible. 

This needs to change. As mathematics educators, we need to move past encouraging our 

education students and pre- and in-service teachers to continue the cycle of authoritarian and 

didactic models of mathematics instruction. What we need is to reconsider that our work as 

mathematics educators now needs to incorporate an understanding of culture and practices that 

support and empower mathematics teachers to consider possibilities of social change through 

mathematical literacy. 

Early research largely defined mathematical literacy as mathematical knowledge and 

skills students need to participate in a technology and information-rich society (Denning, 1983). 

Educational researchers generally interpreted these skills as number sense and procedural 

fluency (to be characterized as advanced mathematical literacy) or as preparation for daily 

quantitative encounters (to be characterized as basic mathematical literacy). A third 

interpretation is that these mathematical skills must reflect the use of mathematical knowledge 

for personal and social change. This interpretation, the subject of this chapter, has been termed 

CML. 
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As Jablonka (2003) noted, in the past 10 years the results of domestic and international 

comparative assessments have generated increased interest in mathematical literacy. Further, 

developments in the professionalization of mathematical literacy as “achievement” by 

organizations such as the U.S. Department of Education and the International Association for the 

Evaluation of Educational Achievement have subtly prioritized an agenda of mathematical 

understanding as solely content areas and technical competency. Consider how, in the United 

States, the National Assessment of Educational Progress (NAEP) puts forth one frequently cited 

professional standard of mathematical literacy. Yet, its current framework for assessing 

mathematics understanding (National Assessment Governing Board, 2008) made no mention of 

mathematical or quantitative literacy as such, and, with content emphasis on number properties 

and operations, measurement, geometry, data analysis, and algebra, it is heavily weighted toward 

an unspoken acknowledgement of the primacy of procedural knowledge and technical fluency. 

Another common comparative assessment is the Trends in International Mathematics and 

Science Study (TIMSS), which, like the NAEP, does not directly define mathematics literacy, 

but instead focuses on content areas (e.g., algebra, data and chance, geometry, and number) and 

cognitive domains (e.g., knowing, applying, and reasoning) that students use when they engage 

in mathematics content (Gonzales et al., 2001, 2008). 

Finally, an international assessment that defines and balances the professionalization of 

mathematical literacy is the Program for International Student Assessment. Unlike NAEP or 

TIMSS, the Program for International Student Assessment considers the knowledge and 

competencies that are important for an individual’s socioeconomic and personal welfare. It 

boldly moves past defining mathematical literacy as solely procedural or technical competencies 

in content areas and suggests an interpretation of mathematical literacy as 
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an individual’s capacity to identify and understand the role that mathematics plays in the 

world, to make well-founded judgments and to use and engage with mathematics in ways 

that meet the needs of that individual’s life as a constructive, concerned, and reflective 

citizen. (Organization for Economic Cooperation and Development, 2006, p. 72) 

Such professional standards of mathematical literacy suggest and frame it from a 

utilitarian, or functional, perspective: the content and cognitive focus of NAEP and TIMSS 

convey the image that mathematical understanding and literacy should be functional and not 

defined as empowering students with mathematical understanding to make connections between 

critical knowledge and possibilities for personal and social change. Viewing mathematical 

literacy solely from such a viewpoint does not entirely frame the different social spaces and 

contexts in which mathematical practices occur (Dowling, 1991). If we consider the social 

spaces for mathematical practices (e.g., academic sites, schools, work, or popular sites), valuing 

a utilitarian perspective means school mathematics is preparing mathematically literate 

individuals with knowledge for academic use (mathematical knowledge for the university) or 

work use (mathematical knowledge and techniques for work), but not for popular use 

(mathematical knowledge for daily and critical contexts). As mathematics educators, we need to 

recognize that mathematical discourse also happens in everyday and critical contexts. 

Understanding CML addresses the mathematical practices of social spaces and prepares 

individuals for engaged participation in democratic society. 

If we examine the thoughts of teachers on CML, we see that the research suggests 

educators interpret it as knowledge and understanding that prepares students with a sense of how 

mathematics can interact with the world for transformative and social change (Frankenstein, 

1983; Gutstein, 2003; Skovsmose, 1994). Yet, existing professional standards of mathematical 
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literacy do not account for the mathematical discourse used for positive personal and social 

change. 

As long as mathematics educators continue to support authoritarian or utilitarian modes 

of mathematical instruction and continue to accept existing professionalizations of mathematical 

literacy, the role of critical mathematical literacy will not gain.  It may not be until we support 

our education students and teachers with knowledge and practice in pedagogy of social change 

through mathematics that we will begin to see wider educational and societal acceptance around 

instruction for CML, and through these actions empower teachers with practices needed to resist 

existing professional standards of mathematical literacy as functional and utilitarian. 

Two Perspectives on Mathematical Literacy 

In the 21st century, social concerns, both domestic and global, have encouraged 

researchers to question the value of what mathematics students are learning, giving rise to two 

competing schools of thought, each stressing a different understanding—AML and BML. AML 

is oriented toward understanding workplace encounters that involve mathematics, such as 

statistics in annual corporate reports or understanding sufficient to design optimal flight paths 

between cities. BML is designed to prepare students for the needs of their current and future 

lives (De Lange, 2001), the present and future needs of the individual; drifting away from 

considering mathematical knowledge independent of human thought and toward an analysis of 

an activity (Freudenthal, 1973) in which mathematical knowledge is discovered through the 

individual’s activity. 

Advanced mathematical literacy. Mathematical knowledge has recently been framed 

from the perspective of an emerging literacy, as mathematics educators begin to promote and 

accept multiple forms of mathematical knowledge (Tirosh, 1999). However, historically what is 
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valued as mathematical knowledge has followed a logicist perspective that believes all 

mathematical knowledge is derived from the principles of logic (Shapiro, 2000), meaning that 

the role of mathematical knowledge is merely functional and that mathematical development and 

experience can be routinized and memorized. Such a perspective is tied to number sense 

(National Center for Education Statistics, 1993) and promotes instruction biased toward 

numerical fluency through emphasizing the understanding students need to participate in a 

technocratic information society (Mullis et al., 1998). 

This early interpretation of mathematics literacy was supported by industry in that 

ultimate reasons for teaching mathematics to all students is because mathematics is primarily 

value in practical and scientific affairs (Carss, 1986). Educative intentions were “not to prepare 

students for university, but to introduce them to modern applications of mathematics in a 

technological society” (Howson et al., 1981, p. 173). 

This type of mathematics education became self-selective; only those with an advanced 

mathematical understanding could continue to study (Moses & Cobb, 2001). Known as AML, it 

bridged instructing for mathematical knowledge and instructing for mathematics literacy, seen as 

necessary mathematical understanding for scientific and technical careers. 

Basic mathematical literacy. While AML follows a logicist perspective, in BML we see 

adoption of process-oriented problem-solving methods(Lakatos, 1976; Polya, 1945; Popper, 

1959) that interpret mathematical knowledge as more fallibilist in nature (Ernest, 1991). That is, 

allowing the individual more autonomy in investigating and establishing knowledge. This drift 

from a logicist genealogy interprets the role of mathematical knowledge as less absolute and 

more formalist, more organic. Mathematical knowledge was expanded to include quantitative 

practices (Denning, 1997), an understanding of the language of mathematics, and competencies 
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individuals would need for present and potential needs. This latter emphasis on individual 

competencies was discussed at the end of the 19th century in the United States by the National 

Education Association (1899), which held that “there should be applications of algebra, 

geometry, and arithmetic to each other, and also to various sciences and the practical affairs of 

life” (p. 196). 

This transition furthered the mathematics literacy perspective of early authors (De Lange, 

2001; Steen, 1997) and promoted distinct characteristics for AML and BML. Generalized 

characteristics of AML and BML were discussed in OECD (2006) and De Lange (2001). These 

are organized in Table 10 to also incorporate secondary mathematics teachers’ viewpoints. 

Table 12 

Specific Characteristics of AML and BML 

Advanced Mathematical Literacy Basic Mathematical Literacy 

Procedural fluency 

Ability to formulate, represent, and solve 

problems, and a disposition as a doer of 

mathematics (Kilpatrick, 2001) 

Disposition, knowledge, and beliefs needed to 

engage in everyday quantitative situations 

(Statistics Canada & Organization for 

Economic Cooperation and Development, 

2005) 

Confidence to approach complex problems 

(Steen, 2001) 

Contextual use of mathematics (Mathematics 

Council of the Alberta Teachers’ Association, 

2005) 

(a) Consciousness of what has been learned, 

(b) capacity for aesthetic appreciation, and 

(c) fluency with the language of mathematics 

(Mathematics Council of the Alberta 

Teachers’ Association, 2005) 

Meaningful use of mathematics in ways that 

meet an individual’s life needs as a reflective 

citizen (Organization for Economic 

Cooperation and Development, 2006) 

 Quantitative ability to understand 

commonplace issues (Steen, 2001) 

 Ability to use mathematics in routine tasks, 

employment, and recreationally (Steen, 1997) 

Note. Adapted from “A Brief Survey of Mathematical Literacy,” by Fish, 2008a, Mathematical Association of 

America Special Interest Group in Quantitative Literacy Newsletter, 1, 6–7. 
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Critical Mathematical Literacy 

Hence, the two types of mathematics literacy handled the role of mathematical 

knowledge as functional (AML) or organic (BML), and considered the role of the individual to 

be interactive through mathematically passive means with their environment, and did not use 

their mathematical experiences for personal, social, or transformative change. CML considers the 

role of the individual to be active—that through individuals’ understanding of mathematics they 

can exercise appropriate action based on the situation, requiring a more informed mathematical 

discourse to answer society’s need to move beyond a traditional logicist perspective on 

mathematical understanding. Understanding CML considers the role of the individual, not 

explicitly acknowledged by the current understanding of AML and BML. 

Considering the role of the individual as more active acknowledges nontraditional models 

of mathematics education that incorporate knowledge and understanding traditionally gained in a 

classroom setting, but also promote the role of students as more active in understanding their 

sociocultural experiences. These models of mathematical instruction may be project based 

(Barron et al., 1998; Jurow, 2005), situative (Lave et al., 1984), design based (Shaffer, 2005), or 

transformative (Frankenstein, 1983, 1990, 1994; Gutstein, 2006; Moses & Cobb, 2001; 

Skovsmose & Valero, 2001), this last of primary concern. 

Several components of these models come together under CML. By promoting 

mathematics literacy as an interconnected lexicon of ideas based on human activity, CML 

becomes the knowledge and understanding that enables students to see how their mathematical 

knowledge can interact with a modern globalized society for positive and transformative social 

change. This suggests an interpretation of CML as informed mathematical discourse 
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contextualized to account for the role of the individual and the situational role of mathematical 

knowledge (see Figure 15). 

Constructivism lends itself as a tool for interpreting how teachers think about CML 

practices and the nature of their strategies for such instruction. This school of thought interprets 

mathematics instruction as a social activity. Mathematics education researchers who draw on 

social constructivist ideas, especially with the outcome of transformative change in mind, 

recognize the importance of sociopolitical issues in their instruction, interpret students as 

engaged participants in making mathematical knowledge, and see empowerment of their students 

as necessary to achieve change through mathematics. 

 

Figure 15. Reinterpreting mathematical literacy 

 

Considering modern thought on the relationship between social constructivism and CML, 

we see the beginnings in the work of Peirce (1903), attempting to bridge the absolute truth of 
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logicism with a more fallibilistic and public-inquiry approach to scientific knowledge. This shift 

from knowledge as existing a priori to public, debatable knowledge proposes, through 

knowledge construction, that evidence is an “objective factor inviting universal examination 

[and] … conceives of its results as essentially provisional or corrigible” (Buchler, 1940, p. x). 

Scientific knowledge is no longer perceived as infallible, but can be extended to account for the 

nature of mathematical knowledge as something beyond an absolute truth. Popper (1959) 

reckoned that knowledge is discoverable, not established a priori, through the logic of scientific 

discovery. In modern times, this method of scientific discovery, The Scientific Method, has 

become ingrained in the teaching of the biological and life sciences. 

Mathematicians such as Polya (1945) acknowledged that mathematical knowledge is 

constructed through a social process: a problem is examined, acted on, and reflected upon at 

completion. Another strategy in the process of discovering mathematical knowledge is a four-

stage process (Hadamard, 1954): preparation—”mobilizing ideas”; incubation—constructing 

various combinations of ideas; illumination—obtaining results; and conscious work—expressing 

results. But perhaps the most important model of social constructivist theories of mathematical 

knowledge is the logic of mathematical discovery proposed in seven stages by Lakatos (1976). 

This need to account for situational mathematical understanding and an increased 

understanding of the role of the individual means educators must shift understanding of 

mathematics literacy from solely AML and BML, to account more for the role of the individual 

in the process of letting-something-be-seen in their understanding of mathematics literacy. This 

is what Ernest (1991) described as the social constructivist approach to mathematics education, 

in which … mathematical knowledge [is] corrigible and quasi-experimental … [and] 

knowledge is culture-bound, value-laden, interconnected and based on human activity 

and enquiry. [Where] both the genesis and the justification of knowledge are understood 
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to be social, being located in human agreement … [allowing] knowledge, ethics, and 

social, political, and economic issues [to be] strongly inter-related. (p. 197) 

Thus, in defining CML to include situational mathematical understanding, the 

relationship between individuals and the role of their mathematical understanding is sensitive to 

the particular situation. It is not a great leap to connect this to the 19th century concept of social 

progress, and the rise of modern science. From the Renaissance idea of “man as the measure of 

all things” and the Enlightenment emphasis on rationality came the concept that society is not 

necessarily static but could advance in social and political conditions over time. People could 

aspire to improve their lot, to achieve a measure of justice, and to have some influence over their 

political fate. CML flows from this intellectual tradition. 

I reinterpret mathematics literacy to acknowledge AML and BML practices but also 

promote and encourage an understanding between the role of the individual and the situational 

role of mathematical knowledge (see Figure 1). This interpretation exhibits the nature of the 

relationship between individuals and their mathematical knowledge, with categories composed 

of factors or conditions of each aspect of mathematics literacy outlined in Table 1 for AML and 

BML, and highlighted below for CML. 

Conditions of Critical Mathematical Literacy 

Sociopolitical conditions accentuate the need to reframe mathematics education for 

transformative social change; instructional conditions include the need to properly prepare 

mathematics teachers. Mathematical knowledge conditions highlight valued content. The 

discussion proposes six domains for CML: reflective capacities, mathematical comme il faut, 

mathematical fluidity, mathematical prudence, mathematical confidence, and mathematical 

doubt. 
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Sociopolitical Conditions 

A discussion of the sociopolitical conditions of CML follows classical interpretations of 

mathematics literacy that have framed the discussion of mathematical knowledge as largely 

functional and a form of content knowledge largely beneficial for technocratic (Denning, 1983) 

or workplace (Forman & Steen, 1994) applications. This kept the role of mathematical 

knowledge Platonic—an ideal realm independent of human thought—and valued the 

participation of the individual as a ritual of unquestioning memorization. 

Neither AML nor BML addresses the use of mathematics for transformative individual 

and social change. The problem of dividing mathematics literacy into two schools of thought was 

that the mathematical content of AML focused on producing an educated workforce versed in 

algorithmic and procedural fluency, whereas the practical, everyday mathematical content of 

BML did not acknowledge other legitimate social spaces or mathematical practices needed by 

society. 

Recognizing neglected uses of mathematics raises a concern for the social and political 

aspects of learning mathematics. The critical mathematics-education movement promotes access 

to mathematical ideas for all people, independent of race/ethnicity, gender, or class (Skovsmose 

& Borba, 2004) and dissolves class and racial boundaries to prepare every student for full 

participation in society. It means moving past algorithmic and procedural fluency to empower 

students with the skills and knowledge they need for a successful life, enabling them to 

understand biases, inconsistencies, and limitations contained in media graphical displays and 

political policy statements. Hence, in a new information and technology society, a new 

mathematics literacy is necessary for transformative social change (Frankenstein, 1983). 
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In response to society’s call for an educated workforce, quantitative reasoning remained 

stubbornly divided into AML and BML. AML sought to produce efficient and productive 

workers who could apply their knowledge to workplace applications, whereas BML became the 

accepted knowledge society expected citizens to have, such as the ability to read a bus schedule 

or understand a car’s gas gauge. In this stratified state, individuals’ technical knowledge 

perpetuated established social and class positions because mathematics literacy was not made 

accessible to all. Illiteracy in mathematics was acceptable to Americans, whereas illiteracy in 

reading and writing was not (Moses & Cobb, 2001); that is, failure was tolerated in mathematics, 

but not in English-language studies. Because individuals need technical knowledge to succeed in 

most fields today, the acceptance of failure in mathematics has too often obscured 

socioeconomic realities (Frankenstein, 1983). 

The function of mathematics education has been self-selecting. That is, as prior 

interpretations of mathematics literacy were biased toward AML and emphasized the needs of a 

technocratic industrial society, mathematics education aimed to identify potential 

mathematicians and direct them into mathematics, science, or technical majors after high school 

(Moses & Cobb, 2001). Apple (2000) referred to this as a thinning of morality, in which 

educators move away from “principles of the common good” (p. 251) to policies and practices in 

which “the competitive individual of the market dominates and social justice will somehow take 

care of itself” (p. 255). The CML movement arose partly in response, representing an effort to 

increase students’ critical sociopolitical consciousness (Gutstein, 2008) and make classroom 

mathematics more empowering (Gutiérrez, 2002; D. B. Martin, 2000) and transformative 

(Frankenstein, 1990; Jablonka, 2003). For example, Frankenstein’s work (1990) promoted CML 

by using statistical data to reveal how political and economic factors have denied minorities 
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access to science, technology, engineering, and mathematics professions. Frankenstein’s 

investigation, using real data, explored factors that limit access to mathematics knowledge and 

perpetuate American culture’s complacency in developing a mathematically illiterate citizenry. 

AML and BML foster specialized workers and citizens. AML produces productive, 

efficient workers, while BML produces mathematically literate individuals who can apply 

number sense to everyday problems. People may apply mathematical principles to their work or 

daily life, but are not necessarily able to ask what their greater role may be as consumers and 

users of mathematics. In contrast, students from CML classrooms are better able to grasp their 

roles and capabilities as holders of mathematical power. For example, students can 

mathematically analyze racial-profiling policies or the effects of gentrification (Gutstein, 2006). 

They begin to see the potential of mathematical knowledge to break down barriers of gender, 

class, and ethnicity (Thomas, 2001). CML enables students to understand how to make socially 

aware decisions and critically interpret information; they can use science and technology 

critically and responsibly and understand the cultural value of mathematics as a relevant 

language to be mastered (Skovsmose & Valero, 2001). 

Instructional Conditions 

Timothy and Quickenton (2005) found that preservice teachers were not well prepared to 

teach from a CML perspective. Preservice teachers found the curriculum unfamiliar when their 

existing notions of mathematics literacy were primarily aligned with an AML perspective. When 

pressed to develop students’ CML, preservice teachers relied on strategies and justifications they 

had experienced as students. Gutstein (2006) posited that if mathematics educators are to 

successfully develop high school students’ CML skills, teacher-education programs must prepare 

preservice teachers to deconstruct media images and representations and ask questions that future 
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students should be taught to ask. New teachers develop mathematical confidence and doubt 

concurrently with their students, for example, in classrooms that reinvent mathematical ideas 

through the mathematization of realistic situations and problems (Gravemeijer, 1998). In 

classrooms that employ project-based instruction (Barron et al., 1998; Jurow, 2005), students 

examine realistic problems and participate in discourse in ways that reflect their pragmatic 

understanding and concerns, justifying why their perspective would solve a problem. Shaffer 

(2005) explored similar ideas in design-based instruction methods. 

Arranged classrooms. In their work with CML educators, Skovsmose and Borba (2004) 

described mathematics classrooms as current, imagined, and arranged situations. When one 

peruses a day of the mathematics teacher’s life, often what they capture is the current situation: 

students not bringing their calculators to class, incomplete homework, and student culture toward 

one another. The imagined classroom is just that: an imagined alternative to the current situation. 

This perusal in the day of a mathematics teacher captures an idealized improvement to the 

current situation—one in which students have access to calculators, homework is finished, 

teachers promote classroom dialogue, and student culture is supportive and accepting. 

Arranged situations include the complexity of classroom situations and are “practical 

alternative[s] that emerge from a negotiation” (Skovsmose & Borba, 2004, p. 214) between 

classroom teachers, students, their parents, and administrators. Arranged situations include the 

idiosyncratic processes and procedures that are used by the classroom culture in handling its 

daily life. Students forget calculators, so the teacher loans them one in exchange for their ID 

card; the teacher does not notice the student hastily finishing homework as new material is 

presented; student culture becomes supportive of certain norms and biased against others. 
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Describing the CML classroom as an arranged environment can yield important 

interpretations about the instructional conditions through which CML emerges. The present 

situation, which in practice would be either an AML or BML classroom, needs to be reframed in 

pre-CML terms. The mathematics literacy that students develop in these classrooms is narrowly 

defined and not well suited for using mathematics critically. By contrast, the idealized classroom 

is an imagined situation in which a proficient teacher and the students acknowledge CML 

through dialogue and by dealing with realistic mathematical problems. An imagined classroom is 

described in the connected-knowing mathematics classroom model of Boaler and Greeno (2000). 

However, in contemporary public schools, the best alternative is the arranged situation, in which 

practical alternatives emerge through student–teacher negotiation, in which realistic mathematics 

permits students and teachers to develop mathematical confidence and doubt simultaneously. 

In arranged classrooms, another role of the teacher is to develop students’ reflective 

capacities, emphasizing the cultural value of mathematics as worthwhile and preparing students 

to mathematically understand socially relevant issues. By developing their reflective capacities, 

students cease to rely on their environment to create meaning and understanding, but instead 

provide their own interpretations. 

Preparing students to mathematically understand social issues encourages the perspective 

that society will be better as a result of that understanding. When students exercise reflection 

about a situation, they transition from abstract or conceptual knowledge to the observed 

phenomenal experience of the abstraction. Frankenstein (1983) used data to encourage students 

to question established knowledge from a dialectical perspective, allowing students to make 

connections between critical knowledge and possibilities for personal transformation and social 

change. 
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Similarly, in CML, students carry life experiences and a sense of social awareness; thus, 

CML can give them “contexts, tools, and space to begin the complex process” of understanding 

their mathematical role in society (Gutstein, 2006). The teacher helps students translate, 

interpret, and understand that role. Just as a language teacher helps students interact with others 

who speak and understand the language, a CML teacher helps students interact with others who 

speak and understand mathematical language through representations, symbolism, and 

expressions. 

Mathematical Knowledge Conditions 

 D’Ambrosio (1990) asserted that 

mathematics ought to prepare citizens so they cannot be manipulated and cheated by 

indices, so they can be allowed to change and to accept jobs which fulfill and appeal to 

their personal creativity [and which enable them to] be free to pursue personal and social 

fulfillment (p. 21) 

This statement acknowledges the changing nature of mathematical knowledge needed for 

participation in an increasingly globally focused society. Here, mathematical knowledge is 

transformative in that its understanding supports students in pursuing social fulfillment. Students 

should understand when they are being mathematically misled or manipulated by others, either 

consciously or through incorrectly represented information. Students need to be critically aware 

and able to evaluate fundamental relationships between conceptual and procedural knowledge 

(Hiebert, 1986). For example, competence in the abstractness of algebra symbols, but lacking an 

understanding of how to use that knowledge to interpret a newspaper graph, means the student is 

deficient in procedural knowledge. 

Innumeracy is the inability to handle numbers and data correctly or to mathematically 

evaluate everyday problems and solutions (De Lange, 2001; Paulos, 1988), leading to an 



www.manaraa.com

125 

overemphasis on computation and inadequate emphasis on mathematics literacy as a tool for 

transformation. For example, in the work of Mullis et al. (1998) the competencies for becoming 

numerate generally focused on mathematical knowledge for deconstructing career-related 

problems and situations, not on techniques for deconstructing natural, social, or political 

conditions and issues (D’Ambrosio, 1990). In contrast, mathematical knowledge taught from the 

perspective of mathematics literacy for transformation and social change (D’Ambrosio, 1990; 

Frankenstein, 1983, 1990, 1994; Gutstein, 2006), and the descriptive comparisons of Dossey 

(1997), guides individuals to positive mathematical participation in society by enabling them to 

justify critical interpretations of data and change their perceptions on social issues (Frankenstein, 

1990). 

CML can be classified as mathematical knowledge that helps students work in 

occupations that appeal to their personal creativity and “can offer a possibility for students to 

engage in a dialogue where critique and disagreement can emerge” (Skovsmose & Valero, 2001, 

p. 50). Students can become literate in the language of mathematics as the exploration of 

knowledge and its arrangement in possible contexts and applications becomes the mathematical 

knowledge that enables them to interpret everyday problems and occupational situations 

creatively. 

Domains of Critical Mathematical Literacy 

The first of the six descriptive categories for CML, reflective capacities, includes two 

parts: cultural values in mathematics, and reflective capacities for mathematically understanding 

social issues (Steen, 1997). Second, mathematical comme il faut is conceptual understanding and 

adaptive-reasoning capacities (Kilpatrick, 2001; Kilpatrick, Swafford, & Findell, 2001). These 
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are the diverse concepts and methods used to “determine whether a solution is justifiable and 

how to justify it” (Kilpatrick et al., 2001, p. 131). 

Third, mathematical fluidity is fluency with the language and skills necessary to evaluate 

others’ mathematical thinking (Mathematics Council of the Alberta Teachers’ Association, 

2005); that is, learning the tools of mathematics, how to manipulate symbols, and how to solve 

equations. Fourth, mathematical prudence is the sense of how mathematics interacts with the 

world (Organization for Economic Cooperation and Development, 2006), including discourse 

and seeking social support through discussion of examples and counterexamples, enabling 

students to internalize concepts (Clarke, Emanuelson, Jablonka, & Ah Chee Mok, 2006) and 

increase control over their immediate environment (Zimmerman, 1989). 

Fifth, mathematical confidence is the confidence to confront authorities and to think 

critically and mathematically as an individual (Steen, 2001). Finally, mathematical doubt 

includes preparedness to use mathematics to investigate and critique injustice and oppressive 

structures (Gutstein, 2006). Mathematical doubt best develops in shared learning environments 

in which dialogue with learning partners allows students to become more critically responsible 

and reflective about applications of the mathematical tools they have acquired (Totten, Sills, 

Digby, & Russ, 1991). 

Reflective Capacities 

Mathematical reflective capacities involve cultural values and mathematically 

understanding social issues (Steen, 1997). First, cultural values that pertain to mathematics 

reflect a positive belief that when mathematical understanding is applied to solve social 

problems, the community and society benefit. Society becomes a better place when individuals 

are involved in addressing relevant social problems, which results in positive change. Positive 
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change is often stunted by cloudy debates that question the use of mathematics as a 

democratizing force (Schoenfeld, 2004). 

The second part of reflective capacities concerns mathematically understanding social 

issues. Table 11 outlines several social issues and offers reflections on how educators may 

address these in their mathematics classrooms. 

Table 11 

Social Issues and the Reflective Capacities in Classrooms 

Social Issue Reflective capacities to mathematically understand social issues 

Media-presented 

graphs 

Are these representations mathematically valid? 

Global warming What are the mathematical criteria we may choose to determine 

genuineness? 

Global financial crisis Is the information politically based? In what ways do they agree 

or disagree with my mathematical understanding? 

 Where is all the money going? Who has access or has lost 

access to it? 

 Using mathematics to investigate the economic and statistical 

problems associated with developing a new fiscal architecture.  

 Activities include mathematical modeling and simulations. 

 

Mathematical Comme il Faut 

Mathematical comme il faut involves conceptual understanding and adaptive reasoning 

capacities (Kilpatrick, 2001; Kilpatrick et al., 2001)—understanding relationships among 

individual facts (Hiebert & Lefevre, 1986), creativity, problem-solving skills, and mathematical 

intuition—skills mathematicians value as important. This is fundamental knowledge about how 

mathematics is organized and systematized. Although teachers wish to emphasize conceptual 

knowledge, they often instead emphasize procedural knowledge (Eisenhart et al., 2993). 
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Adaptive reasoning capacities (Kilpatrick, 2001; Kilpatrick et al., 2001) are “the capacity 

for logical thought and for reflection on, explanation of, and justification of mathematical 

arguments” (Kilpatrick, 2001). These two concepts together are organized into mathematical 

comme il faut, tools and habits of thought that prepare students to apply their CML at a high 

level (conceptual understanding) and to be secure in communicating and verifying why those 

arguments are valid (adaptive reasoning capacities). 

Mathematical Fluidity 

Mathematical fluidity is fluency with the language of mathematics and a capacity to 

evaluate the mathematical thinking of others (Mathematics Council of the Alberta Teachers’ 

Association, 2005); a property of AML that CML has inherited. Under AML, fluency with the 

language of mathematics means mathematically literate individuals who are comfortable with 

expressions and symbols and have a complex understanding of the nature and order of 

operations. In the CML framework, fluency adds an individual’s capacity to critically evaluate 

the mathematical thinking of others. For instance, when confronting data representations of 

global-warming trends, a critically, mathematically literate individual will comprehend patterns 

or equations, but will also critically question biases in the graph’s axes, recognize the selectivity 

of the data, or engage in dialogue about countermathematical perspectives. 

Mathematical Prudence 

Mathematical prudence involves a sense of how mathematics interacts with the world and 

the understanding necessary for making well-founded judgments (Organization for Economic 

Cooperation and Development, 2006), and, from the CML perspective, an individual’s skillful 

reason, caution, and ingenuity in the use of mathematical resources. Metaphorically, 

mathematical prudence can be visualized as a garden. The individual has spent time nourishing 
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and developing resources and can exercise skill and ingenuity in selecting appropriate self-

knowledge. 

The CML “sense” is different from other forms of mathematics literacy. Under AML, 

this sense includes technical understanding and familiarity with procedures needed to get a 

correct answer. Under BML, this sense may involve interpreting bus and train timetables (for 

example, Organization for Economic Cooperation and Development, 2006) or comprehension 

about using geometric shapes to find area or volume. Under CML, this sense may involve 

knowing which tool(s) the activity requires. 

The second component of mathematical prudence is the understanding necessary for 

making well-founded judgments (Organization for Economic Cooperation and Development, 

2006). Applying mathematical prudence means effectively solving the problem and more 

confidently interpreting results and actions. 

Mathematical Confidence 

Mathematical confidence allows one to confront authorities and think critically and 

mathematically as an individual (Steen, 2001). Mathematical confidence is unique to CML, in 

that one of the goals of CML is to prepare students with the mathematical understanding 

necessary for transformative change. Mathematics educators regard mathematical confidence as 

important to apply and communicate in the mathematics literacy context, and to connect 

concepts to achieve results (Fish, 2008). 

Examples of an individual’s use of mathematical confidence to confront authorities can 

be found in D’Ambrosio (1990), Frankenstein (1983), and more recently in Gutstein (2003) and 

Stocker (2008). What is notable about mathematical confidence is that it guides the development 

of students’ perception and mathematical knowledge in ways that prepare them to 
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mathematically critique authority. Educators accomplish this by valuing students’ lived 

experiences, using real-world data, and making connections between mathematics and positive 

(transformative) social change. 

As the nature of CML is to prepare individuals mathematically for transformative change, 

this last component of mathematical confidence is empowerment to think critically and 

mathematically as an individual. Legal issues and power are often at the forefront of social and 

political discussion, as in the civil rights and women’s movements: critically empowered citizens 

had broader perspectives on their participation in American society and culture. Empowerment 

through mathematical confidence means challenging media, cultural, and social representations, 

and analyzing them mathematically. For example, investigating the radiation–cancer link from 

cell-phone usage, examining mathematical reasons for or against gun ownership, or 

understanding adolescent sexuality and unwanted pregnancy, are moral dilemmas that can be 

represented through mathematical dialogue and investigation. 

Mathematical Doubt 

Mathematical doubt involves preparedness to use mathematics to investigate and critique 

injustice, and the skills necessary to challenge oppressive structures mathematically (Gutstein, 

2006). Gutstein (2006) believed “students need to be prepared through their mathematics 

education to investigate and critique injustice, and to challenge, in words and actions, oppressive 

structures and acts” (p. 210). Preparedness means individuals have developed components of 

CML (reflective capacities, mathematical comme il faut, etc.), that enable them to apply 

mathematical doubt, when necessary, to information and social issues they encounter daily. The 

individual’s mathematical understanding and sense of what is and is not possible support a 

healthy sense of mathematical doubt. 
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This preparedness gives the individual courage to investigate injustices and promote 

positive social change. Preparedness means there is an observable injustice that can be analyzed 

and potentially resolved through CML. For example, South African teachers use contexts of 

world population and AIDS to engage students with pattern recognition and pattern description, 

and students suggest ways these social problems may be understood or prevented (Sethole et al., 

2006). Working with social problems by embedding them in mathematical tasks not only 

prepares students to investigate injustice, but enables them to mathematically challenge 

oppressive structures. 

Putting Things Together 

CML prepares students to explore their life situations through an understanding of how to 

make socially aware decisions that can lead to transformative social change. The CML model 

acknowledges that students can use mathematical knowledge critically and thus understand the 

cultural value of mathematics; because students recognize the value of realistic data, the model 

encourages them to question established knowledge and make connections between critical 

knowledge and possibilities for personal transformation and social change. Critical mathematics 

educators need to help students interact with others who speak and understand mathematical 

language through representations, symbols, and expressions. This perspective prepares citizens 

to preclude manipulation by, for instance, the media’s mathematical misinformation, and 

empowers individuals to pursue employment options. 

Finally, CML is evaluative in that it encourages students to be critically aware of 

fundamental relationships between conceptual and procedural knowledge; its application 

becomes a narrative, arranged with the contexts and applications of mathematical knowledge that 

enable individuals to interpret everyday problems and occupational situations. 
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Conclusion 

This chapter examined how domestic and international comparative assessments 

primarily categorize mathematics literacy as being only AML, as in the case of NAEP and 

TIMSS, and in doing so do not acknowledge the important role mathematics plays in supporting 

individuals in working toward social change. Early critics, De Lange (2001) and Steen (1997), 

critiqued our understanding of mathematics literacy largely as AML. They recommended 

shifting from an understanding of mathematics as absolutist and functional to a more organic 

analysis of an activity (Freudenthal, 1973) in which knowledge is generated and discovered 

through an individual’s mathematical activity. 

AML could be understood as procedural fluency; an ability to formulate, represent, and 

solve mathematics problems; a disposition as a doer of mathematics; confidently approaching 

complex problems; conscious of what has been learned; able to appreciate the aesthetics of 

mathematics; and fluent with the language of mathematics. BML is understood as dispositions, 

knowledge, and beliefs needed to engage in everyday quantitative situations; contextual use of 

mathematics; meaningful use of mathematics to meet an individual’s life needs as a reflective 

citizen; the quantitative ability to understand commonplace issues; and the ability to use 

mathematics in routine tasks, employment, and recreation. 

Finally, CML involves reflective capacities (cultural values with regard to mathematics 

and reflective capacities for mathematically understanding social issues), mathematical comme il 

faut (conceptual understanding and adaptive-reasoning capacities), mathematical fluidity 

(fluency with the language of mathematics and capacity to evaluate the mathematical thinking of 

others), mathematical prudence (the sense of how mathematics interacts with the world and 

understanding necessary to make well-founded judgments), mathematical confidence 
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(confidence to confront authorities and empowerment to think critically and mathematically), 

and mathematical doubt (preparedness to use mathematics to investigate and critique injustice). 
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Appendix A: Descriptive Observation Data Protocol. 

1. Describe in detail all the places in the classroom. 

 

2. Describe in detail all the objects and manipulatives used in the classroom. 

 

3. What are the ways classroom actions are developed and engaged in? 

 

4. Describe in detail what happens during classroom activities. 

 

5. Describe in detail all the events taking place. 

 

6. Describe in detail the time periods that take place. 

 

7. Describe the people involved. 

 

8. Describe in detail all the things people are trying to accomplish. 

 

9. Describe in detail the emotions felt and expressed. 
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Appendix A-1: Exhibit of daily professional materials 

Rubric for final summative presentation. 

 

Choose a social issue 

 Define the problem 

 Explain possible solutions 

 Explain the cost of solutions 

 Use your own graphs and use your own words 

 

Math  

Level 4      Level 3      

Explains graphs and numbers   Explains graphs and numbers 

Explains meaning of graphs   Explains appearance of graphs 

Understand what you present   Understand what you present 

Created your own graphs   Use a different source for graphs 

 

Creativity and Presentation 

Level 4      Level 3       

Captures interest    Organized 

Stands out     Understandable 

Organized     Sometimes interesting 

Understandable    Reasonable timing (not too long or short) 

Good timing 

 

Information 

Level 4      Level 3      

References from many sources  References from many sources 

Everyone can understand info   Most people can understand info 

You understand info    You understand info 

Organized into sections   Information lists solutions 

Information explains solutions 
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Appendix B: First Interview—Elements of an Educational Ideology for Mathematics 

Interview Protocol. 

Participant’s Pedagogy 

1. How would you describe the pedagogical strategies you use on a daily basis? 

a. How would you describe the focus of what you do? 

i. Do you focus on procedures? Pose problems? 

b. Could you describe what this focus looks like in the classroom? 

2. What do you feel is important that students take away when they leave your 

classroom? 

a. Technical fluency? Skills for society? Knowledge for change? 

b. If these students were also interviewed, what do you think they would find most 

memorable about your classes? 

3. By what means do you respond to student needs for a mathematical environment? 

a. For example, in your classroom do you give priority to the needs of society? 

Industry? The needs of the individual? 

4. What do you think has had the biggest impact on your instructional strategies? 

Primary Elements 

5. How would you describe your overall personal mathematical epistemology? 

a. For example, would you acknowledge that mathematics should be transmitted 

from teacher to student? 

b. That mathematical knowledge is absolute? Separate from reality? Based in human 

activity? 
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6. In thinking about your instruction, how would you describe the set of moral values 

required to teach the way you do? 

a. Would you acknowledge the principles of egalitarianism? Democratic 

participation? Citizenship? 

7. How would you describe your beliefs regarding the students you teach? 

a. Would you say they are “empty vessels” or “clay to be molded”? 

8. How would you describe your beliefs about society? 

a. Is it a social hierarchy to be maintained? System of inequities in need of change? 

9. How would you explain your beliefs about the goals of education? What roles does 

education play in the development of the individual? Of society? 

Secondary Elements 

10. I’d like you to think about your views on the goals of math education. How would 

you describe how mathematics education contributes to society? 

a. Can you talk about your aspirations and goals as a mathematics educator? 

11. I’d like for you to describe your view on school mathematical knowledge. How do 

you see it as connected to other realms of knowledge? Its relationship to culture? To 

society? To life? 

12. How would you describe your view on learning mathematics? 

a. By what means do you believe children need to engage with mathematics? 

Through dialogue? Investigating? Posing and solving problems? 

13. Would you next discuss your views on teaching mathematics. For example, do you 

engage or expect student-student and student-teacher discussion? 

a. What does that normally look like? 
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b. If you use cooperative work, what does it look like in your classroom? Why this 

method of student work in contrast to other methods? 

c. How would you pose a problem? Can you describe a recent example? 

d. How would you engage students in mathematical critical thinking? Can you 

describe a recent example? 

e. What kinds of materials and topics do you use? 

i. Are they socially relevant? How? 

ii. In what ways do these materials and topics promote social engagement? 

Student empowerment? 

14. Could you describe measures and modes of assessment to gauge mathematical 

competence and achievement? 

a. In what ways might these typically be used in your classroom or school? 

b. What were the most important reasons for considering these assessments? 

15. What kinds of resources do you use in your instruction? 

a. Can you describe what kinds of “authentic materials” (newspapers, official 

statistics) you use? 

b. Can you describe a lesson in which these materials were used? 

16. How would you describe the way you interpret individual student’s mathematical 

ability? 

a. Biological? Shaped by culture? By the social environment? 

17. What role do you see the curriculum as having? For example, what historical, 

cultural, or geographical resources should it address? 

a. What do you see as the role of mathematics in nonacademic contexts? 
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b. How would you describe the role of mathematics in the reproduction of social 

disadvantage? 
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Appendix C: Second Teacher Interview Protocol 

Please answer the following questions to the best of your ability. If possible, provide, for 

each question, an answer from each of the following perspectives: 

a. Your beliefs about the nature of mathematics, including the influence of your prior 

experiences with mathematics on your current beliefs. 

b. Your beliefs about learning mathematics, including your beliefs about critical 

mathematical learning (CML). 

c. Your beliefs about teaching mathematics. 

Reflective Capacities: 

1. Cultural values with regard to mathematics. How would you describe the ways these 

beliefs guide your perspective on the cultural and societal importance of your 

instruction that directs students to be mathematically aware of social, political, and 

economic and cultural issues? 

2. Reflective capacities for mathematical understanding of social issues. How would 

you contrast your beliefs with those of non-CML teachers you may know or have 

experience with? For example, consider the differences that may exist when you are 

preparing students to address relevant social problems. 

Mathematical Comme Il Faut: 

3. Conceptual understanding. What role do your beliefs play in helping students to 

understand relationships among individual facts, creativity, problem solving, 

mathematical intuition, and other topics related to how mathematics is organized. 
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4. Adaptive reasoning capacity. Please describe how your beliefs influence the ways in 

which you attempt to provide students with opportunities for logical thought and 

reflection, explanation, and justification of mathematical arguments. 

Mathematical Fluidity: 

5. Fluency with the language of mathematics. Describe how your beliefs affect how 

you prepare students to be comfortable with the expressions, symbols, and language 

of mathematics? 

6. Capacity to evaluate the mathematical thinking of others. Explain how you prepare 

students with skills to evaluate and think critically about the mathematical thinking 

and reasoning of others. 

Mathematical Prudence: 

7. Sense of how mathematics interacts with the world. Please explain how your 

mathematical beliefs influence the ways in which your instruction promotes students’ 

understanding of how mathematics interacts with the world. 

8. Ability to make well-founded judgments. Please explain how your beliefs have 

prepared you for engaging with students in ways that enable them to make well-

founded judgments and interpret actions and results? 

Mathematical Confidence: 

9. The mathematical confidence to confront authorities. As a mathematics teacher, 

please describe how your mathematical beliefs influence your instruction and 

pedagogy related to empowering students to be able to confront authority figures 

mathematically. 
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10. Empowerment to think critically and mathematically as an individual. How would 

you describe how your beliefs influence the ways in which you prepare students to 

think critically and mathematically as individuals? 

Mathematical Dubiosity: 

11. Preparedness to use mathematics to investigate and critique injustice. How would 

you explain the ways in which your mathematical beliefs are related to your 

instruction in preparing students to use mathematics as a means for investigating and 

critiquing injustice? 

12. Skills necessary to mathematically challenge oppressive structures. Please describe 

how your beliefs influence the means by which you teach students skills, ideas, and 

concepts for mathematically challenging oppressive structures. 
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Appendix D: Tuberculosis lesson 

Too close for comfort
2
 

Lesson 14 

Short description:   Tuberculosis is a disease that spreads through the air when people 

are in very close contact with each other. Many homeless shelters 

are often horribly overcrowded. If disease and overcrowding are 

keeping people on the streets, can we do better? 

Specific mathematics: 

 Measurement 

 Geo & spatial sense 

 Patterning/algebra 

 Data & probability 

Specific social justice topics: 

 Class/poverty 

 workplace 

 Civics/community 

 

 

OPENING 
“There are many shelters that do not meet the UN standards for refugee camps in terms of public 

health measures” (Tuberculosis Action Group, 2003). 

 

Tuberculosis (TB) is a disease caused by the bacteria Mycobacterium tuberculosis. One third of 

the world’s people are infected and each year two million people die from the disease. 

Tuberculosis does not infect people equally: people who live in poverty are more likely to 

contract the illness. 

 

Homeless shelters are places where people can go to seek warmth, food, and a bed/sleeping mat 

for the night. They tend to be run by NGOs, funding by the government or private donation. 

Government cuts in funding, less affordable housing, increased powers to landlords to set the 

cost of rent and evict tenants and low minimum wages all contribute to homelessness and cause 

the number of people using shelters to increase (TAG, 2003). 

 

Sometimes people who are homeless choose to sleep on the streets even though it is very cold 

and there are spaces in shelters. One reason is the possibility of getting sick from sleeping in very 

                                                 

2
 Reprinted with permission from the publisher from Stocker, 2008, Math that matters: A teacher 

resource for linking math and social justice. Ottawa: Canadian Center for Policy Alternatives. 
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close quarters. The distance between sleeping mats can be as small as 36 CM and most shelters 

are consistently over 90% full. 

 

--CAN YOU THINK OF OTHER POSSIBLE REASONS WHY PEOPLE MIGHT 

CHOOSE THE STREETS OVER A SHELTER?— 

 

 

MATHEMATICAL UNDERSTANDING: 
 

1. Use the floor plan of a sleeping space in a shelter to draw the number of sleeping mats 

you can fit in the space. Assume each mat is 2 meters long by 0.75 meters wide. Instead 

of the 36 cm between mats, make sure you leave 50 cm between mats and 50 cm between 

walls and mats. Each square of the floor plan represents 1 sq. meter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Calculate the total available floor space (this time, include the entrance and bathrooms). 
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3. Calculate the rate of people per square meter in this shelter. NOTE: The UNITED NATIONS 

sets the standard for space per person in refugee camps at 4.5 to 5 sq. meters per person. How 

does the rate for this shelter compare? 

 

4. Calculate the rate of people per bathroom in this shelter. 

 

5. Calculate the floor space of your living space in sq. meters. 

 

6. Calculate the rate of people per sq. meter in your home. 

7. Call a local real estate agent and ask them what the typical sq. footage is for a house in a 

wealthy area of town. Assume a family of four lives there. Calculate the rate of people per sq. 

meter in that house. 

 

Part of the problem of shelters is what is called forced migration. In such programs, the shelter 

location is different each night of the week, so people must always be on the move. This is called 

transience. Other shelters have maximum stay lengths (two weeks, for example). The 

combination of close human contact and increase transience can make the spread of disease 

easier and tracking the disease more difficult (CSJ Foundation for Research and Education, 

2003). 

 

8. Imagine a person using the shelter system contracts influenza. Due to transience and crowding 

in shelters, examine the spread of the disease in the following table. 

 

Time, in days Number of people infected 

0 1 

1 2 

2 4 

3 8 

4  

5  

6  

7  

8  

9  

10  

 

a. Complete the table. State the algebraic equation for this pattern.  

b. Graph the results using time in days for the x-axis and the number of people    infected 

for the y-axis. What kind of growth is this? 

c. If the disease was really this contagious, and nothing were done to prevent its spread, 

how many days would it take for 10,000 people to be infected? 

d. What kinds of things cause the spread of disease? What implications does this have for 

the shelter system? 
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SOCIAL ACTION: 
 Have a shelter worker visit your class to talk about the system in your city. 

 Visit the National Coalition on Housing and Homelessness (for CA teachers, USA 

teachers consider a similar organization) and sign the endorsement for housing 

solutions that work. 

 View “Shelter in the storm” (Directed by Michael Connolly and “Street Nurse”) from 

Toronto Disaster Relief Committee. 
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Appendix E-1:  Exhibits of utilitarian epistemology and their critical mathematical literacy 

counterparts. 

A-1. What could you do to engage your students so that they would learn to answer the 

following question? 

 
1. A farmer’s field is fenced on three sides with 1000 m of fence. What dimensions of fence 

give the greatest area of field? 
 
 

 
 

B-1. The same math concepts can be taught with a social justice focus 

 
1. How many people do you think could live comfortably in our classroom, if it was their only 

sleeping, eating, washroom, and living space? 
 

Theresienstadt Concentration Camp was Nazi Germany’s example that they used to show the 
world that they were not mistreating their Jewish people in 1944. It can be represented as a 
rectangular enclosure with buildings along one side and a barbed-wire fence along the other 

three sides. 
 

2. With 1000 m of fence, what is the maximum area of the camp? 
 
When the Nazis showed the world this “model” camp, there were 60, 000 people living there. 

Each person had about 2 m2 of living space: that is the equivalent of 55 people living in a 
classroom, for years! This was the best that the Nazis had to show the world. 

 
3. Where (if anywhere) do you think there are people living like this right now? What can you 

do about it?  
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Appendix E-2:  Exhibits of utilitarian epistemology and their critical mathematical literacy 

counterparts. 

 

A-2. What could you do to engage your students so that they would learn to answer the 

following question? 

 

1. A rectangular prism has dimensions of 15.6 cm x 6.63 cm x 0.0109 cm. Determine the 
volume of the prism. 

 

 
 

B-2. The same math concepts can be taught with a social justice focus 

 
1. A US dollar has the approximate dimensions of 15.6 cm long x 6.63 cm wide x 0.0109 cm 

thick. Determine the volume of a US dollar. 
 

2. Measure the classroom length, width and height. Determine the volume of the classroom. 
 
3. How many US $1 bills would fit into the classroom? 

 
4. The tobacco industry annual advertising budget is approximately 13.5 billion dollars. This 

does not include production, sales, wages, or research… just advertising. How many 
classrooms full of US $1 bills does this represent? 

 

5. What can you do about this? 
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APPENDIX F: A brief discussion of teacher beliefs framing critical mathematical literacy  

This appendix will discuss how mathematics teachers’ beliefs are characterized and their 

relationship to classroom practice. An understanding of mathematics teachers’ beliefs will frame 

the interpretation of their conceptualization of CML practices and instructional strategies. 

Several different models characterize teachers’ insights and beliefs (Calderhead, 1996; 

Raymond, 1997; Thompson, 1992), factors that influence the relationship between the role of 

prior knowledge and beliefs in learning to teach (Borko & Putnam, 1996), or the relationship 

between the teacher and the curriculum materials (Remillard, 2005). In a discussion of teachers’ 

beliefs and conceptions, Thompson (1992) cast a wide net regarding these belief systems, largely 

considered conceptions that include “beliefs, meanings, concepts, propositions, rules, mental 

images, preferences, and the like” (p. 130), stemming from Ernest’s (1998) influences on 

mathematics teaching. 

Calderhead’s (1996) survey of teachers’ beliefs and knowledge is not an appropriate 

model for interpreting teachers’ beliefs because it takes a cognitive perspective that 

acknowledges it is “sometimes difficult to identify the distinguishing features of beliefs and how 

they are separated from knowledge” (p. 719). For this literature review I am seeking models of 

beliefs that emphasize knowledge as externalized and beliefs as internal, personal deductions. 

Calderhead interpreted teachers’ knowledge and beliefs as “teachers’ cognitions” (p. 715, 

p. 721), which does not seem to involve an understanding that teachers’ beliefs, particularly 

mathematical beliefs, are influenced by prior subject-matter experiences. 

Additional research on teacher beliefs suggested that they operate as filters through which 

teacher learning happens (Borko & Putnam, 1996) and that they influence decisions and actions 

made prior to, during, and after instruction (Philippou & Christou, 1997). Such perspectives treat 
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beliefs as unconscious and do not seem to encourage an analysis of the idea that the action of a 

filter in regulating behavior is primarily unidirectional: it can act as a blocking mechanism by 

filtering a potential idea, and such perspectives do not enable teachers to reflect on their beliefs 

or actions. 

Teacher knowledge is externalized, whereas beliefs are internal, personal deductions. In 

this distinction, knowledge and beliefs are separated. Knowledge reflects something that is 

learned—a conditioning that affects students’ skills (Schifter, 2001)—but teachers’ beliefs are 

about what mathematics is (Hersh, 1998) and are more related to their classroom instruction. 

Knowledge becomes sets of externalized truths to be manufactured or acquired, while beliefs are 

a personal, internalized ethos that regulates behavior and actions and provides space for 

reflection. Beliefs are internalized and personal in that they 

often include affective feelings and evaluations, vivid memories of personal experiences, 

and assumptions about the existence of entities and alternative worlds, all of which are 

simply not open to outside evaluation or critical examination in the same sense that … 

knowledge systems are. (Nespor, 1987, p. 321) 

Consider, then, that teacher knowledge is externalized, accepted truths to be acquired, whereas 

teacher beliefs are personal conclusions. Hence, when answering the research question “What is 

the nature of strategies mathematics teachers use for instruction aligned with a CML 

philosophy?” teacher beliefs will be considered. 

For this discussion I will build on Raymond’s (1997) model of mathematics teachers’ 

mathematical beliefs. These are the “personal judgments about mathematics formulated from 

experiences in mathematics, including beliefs about the nature of mathematics, about learning 

mathematics, and about teaching mathematics” (p. 552). 
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Mathematical Beliefs Formulated from Experiences in Mathematics 

The literature suggests several influences on mathematics teachers’ beliefs that are 

formulated from prior experiences in mathematics. The most conspicuous factor that influences 

teachers’ mathematical beliefs stems from prior elementary (Charalambous, Philippou, & 

Kyriakides, 2002; Uusimaki & Nason, 2004) and secondary school experiences. Other factors 

include preservice teachers’ field experience emphasizing procedural over conceptual knowledge 

(Eisenhart et al., 2993), and evidence suggesting the mathematical preparation of teachers as 

highly biased toward AML (McLeod & Huinker, 2007). Further, Carroll (1997) found that the 

personal experience of many elementary mathematics teachers was riddled with mathematics 

anxiety and negative attitudes toward mathematics. Interestingly, mathematical beliefs 

formulated from experience in teacher-education programs are minimally effective (Stipek, 

Givvin, Salmon, & MacGyvers, 2001), whereas preservice-methods course experiences are also 

characteristically negative for elementary education students (Mewborn, 2000) and tend to be 

utilitarian in approach (Britzman, 1986). 

Mathematical beliefs about the nature of mathematics. On the nature of mathematics, 

Ernest (1991) proposed a model that characterizes teachers’ mathematical beliefs about the 

nature of mathematics as utilitarian, purist, or social constructivist. This model is useful in the 

sense that it can be used in organizing thought around mathematical beliefs and views on 

mathematical knowledge from a mathematical literacy perspective, as outlined in Table 3. In the 

context of mathematical literacy, teachers with utilitarian beliefs focus on promoting functional 

understanding in their classrooms and see procedural and technical fluency as the basis for 

determining which knowledge and skills to value. These beliefs are embodied as a Platonic 

mathematical cultural system (Wilder, 1981) and have been previously discussed. Recall that this 
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type of system regards knowledge as cumulative and considers attainment of mathematical 

knowledge as hereditarily transmitted, based on the needs of society/industry and not the 

individual. This perspective aligns with an AML ideology. 

Mathematical beliefs recognized as purist view mathematics as being centered, and view 

their ultimate understanding as rooted in the mindset, practices, and everyday skills the 

individual needs to participate in society. The purist perspective aligns with BML. The social-

change mathematical-beliefs perspective views the nature of mathematics as socially made 

(Wheeler, 1967, as cited in Ernest, 1991, p. 205), cultural (Bishop, 1988), and democratic 

knowledge (D’Ambrosio, 1990; Orey & Rosa, 2007; Skovsmose & Valero, 2001). This 

perspective aligns with CML. In Table 3, teachers’ mathematical beliefs are related to beliefs 

about mathematical knowledge. 

Mathematical beliefs about learning mathematics. Mathematical beliefs about 

learning mathematics can be summarized through the utilitarian/AML, purist/BML, and social-

change/CML perspectives. Mathematics teachers whose mathematical beliefs about learning 

mathematics are utilitarian/AML perceive mathematics as functional and logically imitative, 

which leads to the perspective that learning mathematics should involve proficiency with 

mathematical tasks and rote practices, and that they are best learned through autocratic 

transmission from teacher to student. Further, evidence suggests that such beliefs about learning 

mathematics, at least among elementary mathematics teachers, are associated with the teacher’s 

level of self-confidence and enjoyment of mathematics; that is, utilitarian teachers do not have as 

much enthusiasm (Stipek et al., 2001) as teachers who hold purist or social-change views. 

Mathematics teachers whose mathematical beliefs are purist consider mathematical 

learning to be process oriented and more student centered than do those who adhere to the 
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utilitarian/AML perspective. This perspective is encapsulated in the writings of the NCTM 

(2000, 2006), the Organization for Economic Co-operation and Development (2006), and the 

early work of Steen (1997). Learning occurs as students respond to their mathematical 

environment, and the mathematics teacher in turn responds to students’ needs. Teachers with 

purist beliefs see learning as often being investigative or discovery-based, and teachers 

proactively engage in decision-making and appropriate methods to develop their students’ 

mathematical learning. 

Mathematical teachers’ beliefs regarding learning mathematics from a social-change 

perspective are rooted in the writings of Freire (1970), Vygotsky (1978), and, more recently, 

Frankenstein (1990), Gutstein (2006), and Lee, Menkart, and Okazawa-Rey (2006). Supporters 

of social-change mathematical learning are similar to the purists (in that learning is process-

based and student-centered), but they include the idea that mathematical learning and activity are 

actualized by the individual’s culture (D’Ambrosio, 1990) and participation in daily society 

(Boaler & Greeno, 2000; Greeno, Collins, & Resnik, 1996). Mathematics teachers holding this 

perspective discuss learning mathematics for social change as more than functional learning 

(AML) and discovery-based (BML); the goal of learning mathematics for social change is to 

mathematically empower students (Steen, 2001) so that they can confront discriminatory and 

inequitable social situations (Gutstein, 2006) through mathematical means. 

Mathematical beliefs about teaching mathematics. We have seen that mathematics 

teachers’ beliefs formulated from experiences in mathematics are largely formed in prior school 

experiences and that perspectives on the nature of mathematics generally follow utilitarian/AML 

(Howson et al., 1981; McLeod & Huinker, 2007), purist/BML (De Lange, 2001; National 

Education Association, 1899), and social-change/CML (Frankenstein, 1983; Skovsmose, 1994) 



www.manaraa.com

173 

ideologies. This section will consider the role of mathematical beliefs about teaching 

mathematics. Such beliefs can be organized into didactic and discussion-based forms of 

teaching. As discussed in Boaler and Greeno (2000), didactic teaching is likely embraced by 

utilitarians and results in received forms of mathematical knowledge, while discussion-based 

teaching, likely embraced by purist and/or social-change teachers, results in connected or 

integrated forms of mathematical knowledge. 

In line with the utilitarian perspective on instruction, which emphasizes functional and 

procedural fluency, the characteristics of mathematics teachers’ beliefs on teaching mathematics 

are heavily content-based and largely professionalized by licensure examinations that value 

strong beliefs in the utilitarian perspective (Hill, Schilling, & Ball, 2004). A heavy professional 

emphasis on preparing these types of educators may be what transmits the utilitarian perspective 

from elementary teachers to elementary students. Even further, literature (Erlwanger, 1973) 

suggests that didactical teaching of mathematics does not require or promote deep mathematical 

understanding. 

Conclusion 

Recall that social constructivist perspectives on the nature of mathematics posit that it is 

socially encapsulated, and related beliefs about learning are that mathematics is learned through 

the individual’s participation in social and cultural situations. From this stance, social 

constructivism borrows from von Glasersfeld’s (1983) perspective that reality is constructed of 

experiences, and also the intuitionist idea (Dummett, 1999, 2000) that knowledge is created by 

humans to produce mathematical beliefs about teaching mathematics, which include 

genuine discussion, both student–student and student–teacher, … cooperative group 

work, project-work and problem-solving, for confidence, engagement and mastery; 

autonomous projects, exploration, problem posing and investigative work, for creativity, 
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student self-direction and engagement through personal relevance; learner questioning of 

… contents, pedagogy and the modes of assessment used, for critical thinking; and 

socially relevant material, projects and topics, including race, gender and mathematics, 

for social engagement and empowerment. (Ernest, 1991, pp. 208–9)  

The mathematics teacher engages in dialogical pedagogy and challenges and clarifies 

students’ knowledge to incorporate other perspectives on mathematics. These beliefs about 

teaching mathematics “support a climate of critical questioning and scrutiny of mathematical 

arguments” (Ernest, 1998, p. 274).  
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APPENDIX G
3
: Gwen Cooper’s statement against the closing of Heinz von Foester High 

School   

Times change.  Neighborhoods change.  I grew up on Pied Walnut and Twin Bluff Streets.  Half 

of the students who graduated from my elementary school went to Robin Heights, the other half 

to Heinz von Foester. I was in the Robin Heights group. In 1968, when I was a freshman, Robin 

Heights enrolled mostly white kids from blue collar families. I envied my Heinz von Foester 

friends. I thought it would be so much cooler to attend Heinz von Foester.   

  

In the 1960’s, Auburn was new. The housing was new and modern. The families who lived in the 

Heinz von Foester neighborhood looked modern and wealthy to me. Their houses were cute, 

their streets were clean.   In June 1968, Robert Kennedy stopped to campaign in Auburn because 

he thought the people in the neighborhood mattered.  

 

Times change. Neighborhoods change. I went away to university and returned in 1981. My old 

blue collar neighborhood was already falling on hard times. The people who stayed were mostly 

old and the people who moved in were underemployed. The struggle was becoming visibly 

harder for both the Robin Heights and Heinz von Foester neighborhoods. The cute modern 

houses were looking less cute.   

 

I came to Heinz von Foester five years ago.  I feel a great sense of urgency in my work. The 

students need my support and I don’t just mean academically…  psychologically. There are 

brilliant students at Heinz von Foester but they don’t always believe they are.  Kids who watch 

their siblings after and sometimes during school. Who don’t have a quiet place to do homework, 

but they do it anyway. Who want to take piano lessons but they just aren’t available. They are 

smart, resilient, funny, beautiful kids.   

 

But, times change. Neighborhoods change. So, Heinz von Foester will likely close. I have one 

request. When you state justification for the closure, don’t say it’s about equity.  

 

Equity to me and my students means equity of outcomes like more kids going to better 

universities, not equity of inputs as in more AP classes. Equity to me and my students means 

serious but gently run classrooms where diverse students can learn and teachers work to change 

their practice, where teachers engage in professional development like the [local professional 

opportunity for critical educators], Teaching for Social Justice, and Rethinking Schools. Equity 

to me means honoring the work of students and teachers over the past ten years in the area of 

small school reform wherever it has tried to flourish in this district. Equity to me is equity of 

worth and image that the growth and achievements of students in Heinz von Foester are just as 

normal as the achievements in any other neighborhoods. [Our] student’s achievement isn’t 

special because he or she is poor, or Latino, or an immigrant from China, or undocumented. It is 

                                                 

3
 Reprinted with identifying information changed and with full permission of the author. 
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special because that student is a hard working, dedicated high school student just like you find 

anywhere else.   

 

If you vote to close Heinz von Foester, please embrace that the decision is political and 

economic. It’s not about equity. Equity is what we are providing now. 

 

 

 


